• Title/Summary/Keyword: Crop growth simulation model

Search Result 58, Processing Time 0.021 seconds

Development of a Gridded Simulation Support System for Rice Growth Based on the ORYZA2000 Model (ORYZA2000 모델에 기반한 격자형 벼 생육 모의 지원 시스템 개발)

  • Hyun, Shinwoo;Yoo, Byoung Hyun;Park, Jinyu;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.270-279
    • /
    • 2017
  • Regional assessment of crop productivity using a gridded simulation approach could aid policy making and crop management. Still, little effort has been made to develop the systems that allows gridded simulations of crop growth using ORYZA 2000 model, which has been used for predicting rice yield in Korea. The objectives of this study were to develop a series of data processing modules for creating input data files, running the crop model, and aggregating output files in a region of interest using gridded data files. These modules were implemented using C++ and R to make the best use of the features provided by these programming languages. In a case study, 13000 input files in a plain text format were prepared using daily gridded weather data that had spatial resolution of 1km and 12.5 km for the period of 2001-2010. Using the text files as inputs to ORYZA2000 model, crop yield simulations were performed for each grid cell using a scenario of crop management practices. After output files were created for grid cells that represent a paddy rice field in South Korea, each output file was aggregated into an output file in the netCDF format. It was found that the spatial pattern of crop yield was relatively similar to actual distribution of yields in Korea, although there were biases of crop yield depending on regions. It seemed that those differences resulted from uncertainties incurred in input data, e.g., transplanting date, cultivar in an area, as well as weather data. Our results indicated that a set of tools developed in this study would be useful for gridded simulation of different crop models. In the further study, it would be worthwhile to take into account compatibility to a modeling interface library for integrated simulation of an agricultural ecosystem.

Development of Calculating System of Solids Level to Harvest High Solids Potato (Solanum tuberosum L.)

  • Jung, Jae-Youn;Suh, Sang-Gon
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.103-109
    • /
    • 2013
  • Estimating the high tuber solids needs a simulation system on potato growth, and its development should be obtained by using agricultural elements which analyze the relationship between crop growth and agricultural factors. An accurate simulation to predict solids level against climatic change employs a calculation of in vivo energy consumption and bias for growth and induction shape in a slight environmental adaptation. So, to calculate in vivo energy consumption, this study took a concept of estimate of the amount of basal metabolism in each tuber. In the validation experiments, the results of measuring solid accumulation of potatoes harvested at dates suggested by simulation agreed with the actual measured values in each regional field during the growth period of years from 2006 till 2010. The mean values of tuber solids level and inter-annual level variation in validation experiments were predicted well by the simulation model. And also, the results of validation experiments represent that concentration of tuber solids were due mainly to the duration of sunshine, above 190 hours per a month, and the cumulative amount of radiation, above 2,200 $MJ{\cdot}m^{-2}$, of the effective growth period.

Development of a Chinese cabbage model using Microsoft Excel/VBA (엑셀/VBA를 이용한 배추 모형 제작)

  • Moon, Kyung Hwan;Song, Eun Young;Wi, Seung Hwan;Oh, Sooja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.228-232
    • /
    • 2018
  • Process-based crop models have been used to assess the impact of climate change on crop production. These models are implemented in procedural or object oriented computer programming languages including FORTRAN, C++, Delphi, Java, which have a stiff learning curve. The requirement for a high level of computer programming is one of barriers for efforts to develop and improve crop models based on biophysical process. In this study, we attempted to develop a Chinese cabbage model using Microsoft Excel with Visual Basic for Application (VBA), which would be easy enough for most agricultural scientists to develop a simple model for crop growth simulation. Results from Soil-Plant-Atmosphere-Research (SPAR) experiments under six temperature conditions were used to determine parameters of the Chinese cabbage model. During a plant growing season in SPAR chambers, numbers of leaves, leaf areas, growth rate of plants were measured six times. Leaf photosynthesis was also measured using LI-6400 Potable Photosynthesis System. Farquhar, von Caemmerer, and Berry (FvCB) model was used to simulate a leaf-level photosynthesis process. A sun/shade model was used to scale up to canopy-level photosynthesis. An Excel add-in, which is a small VBA program to assist crop modeling, was used to implement a Chinese cabbage model under the environment of Excel organizing all of equations into a single set of crop model. The model was able to simulate hourly changes in photosynthesis, growth rate, and other physiological variables using meteorological input data. Estimates and measurements of dry weight obtained from six SPAR chambers were linearly related ($R^2=0.985$). This result indicated that the Excel/VBA can be widely used for many crop scientists to develop crop models.

Determination of the Temperature Increasing Value of Seedling Nursery Period for Oryza2000 Model to Applicate Grid Weather Data (Oryza2000 모형 활용을 위한 육묘기 보온 상승온도 결정)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Baek, Jaekyeong;Kwon, Dongwon;Lee, Yunho;Cho, Jung-Il;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2020
  • Spatial simulation of crop growth often requires application of management conditions to each cell. In particular, it is of great importance to determine the temperature conditions during the nursery period for rice seedlings, which would affect heading date projections. The objective of this study was to determine the value of TMPSB, which is the parameter of ORYZA2000 model to represent temperature increase under a plastic tunnel during the rice seedling periods. Candidate values of TMPSB including 0℃, 2℃, 5℃, 7℃ and 9℃ were used to simulate rice growth and yield. Planting dates were set from mid-April to mid-June. The simulations were performed at four sites including Cheorwon, Suwon, Seosan, and Gwangju where climate conditions at rice fields common in Korea can be represented. It was found that the TMPSB values of 0℃ and 2℃ resulted in a large variation of heading date due to low temperature occurred in mid-April. When the TMPSB value was >7℃, the variation of heading date was relatively small. Still, the TMPSB value of 5℃ resulted in the least variation of heading date for all the planting dates. Our results suggested that the TMPSB value of 5℃ would help reasonable assessment of climate change impact on rice production when high resolution gridded weather data are used as inputs to ORYZA2000 model over South Korea.

Yield and Production Forecasting of Paddy Rice at a Sub-county Scale Resolution by Using Crop Simulation and Weather Interpolation Techniques (기상자료 공간내삽과 작물 생육모의기법에 의한 전국의 읍면 단위 쌀 생산량 예측)

  • 윤진일;조경숙
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.37-43
    • /
    • 2001
  • Crop status monitoring and yield prediction at higher spatial resolution is a valuable tool in various decision making processes including agricultural policy making by the national and local governments. A prototype crop forecasting system was developed to project the size of rice crop across geographic areas nationwide, based on daily weather pattern. The system consists of crop models and the input data for 1,455 cultivation zone units (the smallest administrative unit of local government in South Korea called "Myun") making up the coterminous South Korea. CERES-rice, a rice crop growth simulation model, was tuned to have genetic characteristics pertinent to domestic cultivars. Daily maximum/minimum temperature, solar radiation, and precipitation surface on 1km by 1km grid spacing were prepared by a spatial interpolation of 63 point observations from the Korea Meteorological Administration network. Spatial mean weather data were derived for each Myun and transformed to the model input format. Soil characteristics and management information at each Myun were available from the Rural Development Administration. The system was applied to the forecasting of national rice production for the recent 3 years (1997 to 1999). The model was run with the past weather data as of September 15 each year, which is about a month earlier than the actual harvest date. Simulated yields of 1,455 Myuns were grouped into 162 counties by acreage-weighted summation to enable the validation, since the official production statistics from the Ministry of Agriculture and Forestry is on the county basis. Forecast yields were less sensitive to the changes in annual climate than the reported yields and there was a relatively weak correlation between the forecast and the reported yields. However, the projected size of rice crop at each county, which was obtained by multiplication of the mean yield with the acreage, was close to the reported production with the $r^2$ values higher than 0.97 in all three years.

  • PDF

Simulation of Wheat Yield under Changing Climate in Pakistan (파키스탄 기후변화에 따른 밀생산량 모의)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.199-199
    • /
    • 2017
  • Sustainable wheat production is of paramount importance for attaining/maintaining the food self-sufficiency status of the rapidly growing nation of Pakistan. However, the average wheat yield per unit area has been dwindling in recent years and the climate-induced variations in rainfall patterns and temperature regimes, during the wheat growth period, are believed to be the reason behind this decline. Crop growth simulation models are powerful tools capable of playing pivotal role in evaluating the climate change impacts on crop yield or productivity. This study was aimed to predict the plausible variations in the wheat yield for future climatic trends so that possible mitigation strategies could be explored. For this purpose, Aquacrop model v. 4.0 was employed to simulate the wheat yield under present and future climatology of the largest agricultural province of Punjab in Pakistan. The data related to crop phenology, management and yield were collected from the experimental plots to calibrate and validate the model. The future climate projections were statistically downscaled from five general circulation models (GCMs) and compared with the base line climate from 1980 to 2010. The model was fed with the projected climate to simulate the wheat yield based on the RCP (representative concentration pathways) 4.5 and 8.5. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop yield decreased and water footprint, especially blue, increased, owing to the elevated irrigation demands due to accelerated evapotranspiration rates. The modeling results provided in this study are expected to provide a basic framework for devising policy responses to minimize the climate change impacts on wheat production in the area.

  • PDF

Agro-Ecosystem Informatics for Rational Crop and Field Management - Remote Sensing, GIS and Modeling -

  • INOUE Yoshio
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2005.08a
    • /
    • pp.22-46
    • /
    • 2005
  • Spatial and timely information on crop and filed conditions is one of the most important basics for rational and efficient planning and management in agriculture. Remote sensing, GIS, and modeling are powerful tools for such applications. This paper presents an overview of the state of the art in remote sensing of crop and field conditions with some case studies. It is also shown that a synergistic linkage between process-based models and remote sensing signatures enables us to estimate the multiple crop/ecosystem variables at a dynamic mode. Remotely sensed information can greatly reduce the uncertainty of simulation models by compensating for insufficient availability of data or parameters. This synergistic approach allows the effective use of infrequent and multi-source remote sensing data for estimating important ecosystem variables such as biomass growth and ecosystem $CO_2$ flux. This paper also shows a geo-spatial information system that enables us to integrate, search, extract, process, transform, and calculate any part of the data based on ID#, attributes, and/or by river-basin boundary, administrative boundary, or boundaries of arbitrary shape/size all over Japan. A case study using the system demonstrates that the nitrogen load from fertilizer was closely related to nitrate concentration of groundwater. The combined use of remote sensing, GIS and modeling would have great potential for various agro-ecosystem applications.

  • PDF

Estimation trial for rice production by simulation model with unmanned air vehicle (UAV) in Sendai, Japan

  • Homma, Koki;Maki, Masayasu;Sasaki, Goshi;Kato, Mizuki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.46-46
    • /
    • 2017
  • We developed a rice simulation model for remote-sensing (SIMRIW-RS, Homma et al., 2007) to evaluate rice production and management on a regional scale. Here, we reports its application trial to estimate rice production in farmers' fields in Sendai, Japan. The remote-sensing data for the application was periodically obtained by multispectral camera (RGB + NIR and RedEdge) attached with unmanned air vehicle (UAV). The airborne images was 8 cm in resolution which was attained by the flight at an altitude of 115 m. The remote-sensing data was relatively corresponded with leaf area index (LAI) of rice and its spatial and temporal variation, although the correspondences had some errors due to locational inaccuracy. Calibration of the simulation model depended on the first two remote-sensing data (obtained around one month after transplanting and panicle initiation) well predicted rice growth evaluated by the third remote-sensing data. The parameters obtained through the calibration may reflect soil fertility, and will be utilized for nutritional management. Although estimation accuracy has still needed to be improved, the rice yield was also well estimated. These results recommended further data accumulation and more accurate locational identification to improve the estimation accuracy.

  • PDF

Comparison of Remote Sensing and Crop Growth Models for Estimating Within-Field LAI Variability

  • Hong, Suk-Young;Sudduth, Kenneth-A.;Kitchen, Newell-R.;Fraisse, Clyde-W.;Palm, Harlan-L.;Wiebold, William-J.
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.175-188
    • /
    • 2004
  • The objectives of this study were to estimate leaf area index (LAI) as a function of image-derived vegetation indices, and to compare measured and estimated LAI to the results of crop model simulation. Soil moisture, crop phenology, and LAI data were obtained several times during the 2001 growing season at monitoring sites established in two central Missouri experimental fields, one planted to com (Zea mays L.) and the other planted to soybean (Glycine max L.). Hyper- and multi-spectral images at varying spatial. and spectral resolutions were acquired from both airborne and satellite platforms, and data were extracted to calculate standard vegetative indices (normalized difference vegetative index, NDVI; ratio vegetative index, RVI; and soil-adjusted vegetative index, SAVI). When comparing these three indices, regressions for measured LAI were of similar quality $(r^2$ =0.59 to 0.61 for com; $r^2$ =0.66 to 0.68 for soybean) in this single-year dataset. CERES(Crop Environment Resource Synthesis)-Maize and CROPGRO-Soybean models were calibrated to measured soil moisture and yield data and used to simulate LAI over the growing season. The CERES-Maize model over-predicted LAI at all corn monitoring sites. Simulated LAI from CROPGRO-Soybean was similar to observed and image-estimated LA! for most soybean monitoring sites. These results suggest crop growth model predictions might be improved by incorporating image-estimated LAI. Greater improvements might be expected with com than with soybean.

Development of Korean SPAR(Soil-Plant-Atmosphere-Research) System for Impact Assessment of Climate Changes and Environmental Stress (기후변화 및 환경스트레스 영향평가를 위한 한국형 SPAR(Soil-Plant-Atmosphere-Research) 시스템의 개발)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.187-195
    • /
    • 2019
  • The needs for precise diagnostics and farm management-decision aids have increased to reduce the risk of climate change and environmental stress. Crop simulation models have been widely used to search optimal solutions for effective cultural practices. However, limited knowledge on physiological responses to environmental variation would make it challenging to apply crop simulation models to a wide range of studies. Advanced research facilities would help investigation of plant response to the environment. In the present study, the sunlit controlled environment chambers, known as Korean SPAR (Soil-Plant-Atmosphere-Research) system, was developed by renovating existing SPAR system. The Korean SPAR system controls and monitors major environmental variables including atmospheric carbon dioxide concentration, temperature and soil moisture. Furthermore, plants are allowed to grow under natural sunlight. Key physiological and physical data such as canopy photosynthesis and respiration, canopy water and nutrient use over the whole growth period are also collected automatically. As a case study, it was shown that the Korean SPAR system would be useful for collection of data needed for understanding the growth and developmental processes of a crop, e.g., soybean. In addition, we have demonstrated that the canopy photosynthetic data of the Korean SPAR indicate the precise representation of physiological responses to environment variation. As a result, physical and physiological data obtained from the Korean SPAR are expected to be useful for development of an advanced crop simulation model minimizing errors and confounding factors that usually occur in field experiments.