• Title/Summary/Keyword: Crop Growth Model

Search Result 247, Processing Time 0.029 seconds

Simulation and Analysis of Solar Radiation Change Resulted from Solar-sharing for Agricultural Solar Photovoltaic System (영농형 태양광 발전 솔라쉐어링에 따른 하부 일사량 변화의 해석 및 분석)

  • Lee, Sang-ik;Choi, Jin-yong;Sung, Seung-joon;Lee, Seung-jae;Lee, Jimin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.63-72
    • /
    • 2020
  • Solar-sharing, which is an agricultural photovoltaic system installing solar panels on the upper part of crop growing field, has especially drawn attention. Because paddy fields for cultivating crops are large flat areas, there have been various attempts to utilize solar energy for solar photovoltaic as well as growth of crops in agriculture. Solar-sharing was first proposed in Japan, and has been actively studied for optimization and practical uses. The domestic climate differs from the climate conditions in which the solar-sharing has been widely studied, therefore, it is required to develop the solar-sharing technology suitable for the domestic climate. In this study, a simulation model was developed to analyze the change of solar radiation resulted from the solar-sharing installation. Monthly solar illumination intensity and the change of illumination intensity according to the various conditions of solar panel installation were simulated. The results of monthly illumination analysis differed by altitude of the sun, which was related to season. In addition, it was analyzed that the monthly illumination decreased by up to 42% due to solar-sharing. Accordingly, it is recommended that solar-sharing should be installed as a way to maximize the efficiency of solar photovoltaic system while minimizing the decrease in solar radiation reaching the crops.

Impact Assessments of High Oil Prices on the Agro-Food System and the Role of Bioenergy Crops

  • Lee, Duu-Hwa;Lin, Hsin-Chun;Chang, Ching-Cheng;Hsu, Shih-Hsun;Chen, Chi-Chun;Sun, Jenny Chin-Hwa
    • Environmental and Resource Economics Review
    • /
    • v.16 no.3
    • /
    • pp.653-682
    • /
    • 2007
  • In this study, multi-sectoral partial equilibrium and computable general equilibrium models of Taiwan are used to investigate the direct and indirect effects of energy price increases on overall economies and agro-food sector in Taiwan. The results suggest that agricultural prices, production cost would increase between 0.27% to 1.88%, and a reduction in GDP around 0.39% to 0.54 %. The negative impact on livestock sector is slightly higher than that on the crop sector. Negative impacts are also observed in the employment and wages. The rising oil price has the potential to discourage production of energy-intensive activity because of the possibility of substitution and adaptations. The growth rate of real GDP will shrink by 0.64% to 1.06% and CPI will increase by 1.17% to 1,95%. Both the agriculture and non-agricultural sector also respond by raising output prices by 0.80% to 1.33%. The rising international oil price has urged the government to take policy actions like using alternative fuels such as biodiesel, bioethanol, and adopting measures to cut down on energy consumptions mainly in transportation sectors in response to public concern over economic shocks.

  • PDF

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

Estimation of Nondestructive Rice Leaf Nitrogen Content Using Ground Optical Sensors (지상광학센서를 이용한 비파괴 벼 엽 질소함량 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.435-441
    • /
    • 2007
  • Ground-based optical sensing over the crop canopy provides information on the mass of plant body which reflects the light, as well as crop nitrogen content which is closely related to the greenness of plant leaves. This method has the merits of being non-destructive real-time based, and thus can be conveniently used for decision making on application of nitrogen fertilizers for crops standing in fields. In the present study relationships among leaf nitrogen content of rice canopy, crop growth status, and Normalized Difference Vegetation Index (NDVI) values were investigated. We measured Green normalized difference vegetation index($gNDVI=({\rho}0.80{\mu}m-{\rho}0.55{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.55{\mu}m)$) and NDVI($({\rho}0.80{\mu}m-{\rho}0.68{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.68{\mu}m)$) were measured by using two different active sensors (Greenseeker, NTech Inc. USA). The study was conducted in the years 2005-06 during the rice growing season at the experimental plots of National Institute of Agricultural Science and Technology located at Suwon, Korea. The experiments carried out with randomized complete block design with the application of four levels of nitrogen fertilizers (0, 70, 100, 130kg N/ha) and same amount of phosphorous and potassium content of the fertilizers. gNDVI and rNDVI increased as growth advanced and reached to maximum values at around early August, G(NDVI) were a decrease in values of observed with the crop maturation. gNDVI values and leaf nitrogen content were highly correlated at early July in 2005 and 2006. On the basis of this finding we attempted to estimate the leaf N contents using gNDVI data obtained in 2005 and 2006. The determination coefficients of the linear model by gNDVI in the years 2005 and 2006 were 0.88 and 0.94, respectively. The measured and estimated leaf N contents using gNDVI values showed good agreement ($R^2=0.86^{***}$). Results from this study show that gNDVI values represent a significant positive correlation with leaf N contents and can be used to estimate leaf N before the panicle formation stage. gNDVI appeared to be a very effective parameter to estimate leaf N content the rice canopy.

Changes in Radiation Use Efficiency of Rice Canopies under Different Nitrogen Nutrition Status (질소영양 상태에 따른 벼 군락의 광 이용효율 변화)

  • Lee Dong-Yun;Kim Min-Ho;Lee Kyu-Jong;Lee Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.190-198
    • /
    • 2006
  • Radiation use efficiency (RUE), the amount of biomass produced per unit intercepted photosynthetically active radiation (PAR), constitutes a main part of crop growth simulation models. The objective of the present study was to evaluate the variation of RUE of rice plants under various nitrogen nutritive conditions. from 1998 to 2000, shoot dry weight (DW), intercepted PAR of rice canopies, and nitrogen nutritive status were measured in various nitrogen fertilization regimes using japonica and Tongil-type varieties. These data were used for estimating the average RUEs before heading and the relationship between RUE and the nitrogen nutritive status. The canopy extinction coefficient (K) increased with the growth of rice until maximum tillering stage and maintained constant at about 0.4 from maximum tillering to heading stage, rapidly increasing again after heading stage. The DW growth revealed significant linear correlation with the cumulative PAR interception of the canopy, enabling the estimation of the average RUE before heading with the slopes of the regression lines. Average RUE tended to increase with the increased level of nitrogen fertilization. RUE increased approaching maximum as the nitrogen nutrition index (NNI) calculated by the ratio of actual shoot N concentration to the critical N concentration for the maximum growth at any growth stage and the specific leaf nitrogen $(SLN;\;g/m^2\;leaf\;area)$ increased. This relationship between RUE (g/MJ of PAR) and N nutritive status was expressed well by the following exponential functions: $$RUE=3.13\{1-exp(-4.33NNNI+1.26)\}$$ $$RUE=3.17\{1-exp(-1.33SLN+0.04)\}$$ The above equations explained, respectively, about 80% and 75% of the average RUE variation due to varying nitrogen nutritive status of rice plants. However, these equations would have some limitations if incorporated as a component model to simulate the rice growth as they are based on relationships averaged over the entire growth period before heading.

Design of Energy Model of Greenhouse Including Plant and Estimation of Heating and Cooling Loads for a Multi-Span Plastic-Film Greenhouse by Building Energy Simulation (건물에너지시뮬레이션을 활용한 연동형 온실 및 작물에너지모델 설계 및 이의 냉·난방부하 산정)

  • Lee, Seung-No;Park, Se-Jun;Lee, In-Bok;Ha, Tae-Hwan;Kwon, Kyeong-Seok;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • The importance of energy saving technology for managing greenhouse was recently highlighted. For practical use of energy in greenhouse, it is necessary to simulate energy flow precisely and estimate heating/cooling loads of greenhouse. So the main purpose of this study was to develope and to validate greenhouse energy model and to estimate annual/maximum energy loads using Building Energy Simulation (BES). Field experiments were carried out in a multi-span plastic-film greenhouse in Jeju Island ($33.2^{\circ}N$, $126.3^{\circ}E$) for 2 months. To develop energy model of the greenhouse, a set of sensors was used to measure the greenhouse microclimate such as air temperature, humidity, leaf temperature, solar radiation, carbon dioxide concentration and so on. Moreover, characteristic length of plant leaf, leaf area index and diffuse non-interceptance were utilized to calculate sensible and latent heat exchange of plant. The internal temperature of greenhouse was compared to validate the greenhouse energy model. Developed model provided a good estimation for the internal temperature throughout the experiments period (coefficients of determination > 0.85, index of agreement > 0.92). After the model validation, we used last 10 years weather data to calculate energy loads of greenhouse according to growth stage of greenhouse crop. The tendency of heating/cooling loads change was depends on external weather condition and optimal temperature for growing crops at each stage. In addition, maximum heating/cooling loads of reference greenhouse were estimated to 644,014 and $756,456kJ{\cdot}hr^{-1}$, respectively.

Functional characterization of Arabidopsis thaliana BLH 8, BEL1-Like Homeodomain 8 involved in environmental stresses (환경 스트레스에 관여하는 애기장대 BLH 8, BEL1-Like Homeodomain 8의 기능 분석)

  • Park, Hyeong-Cheol;Park, Ji-Young;Baek, Dong-Won;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.162-168
    • /
    • 2011
  • High salinity is a common stress condition that adversely affects plant growth and crop production. In response to various environmental stresses, plants activate a number of defense genes that function to increase the tolerance. To isolate Arabidopsis genes that are involved in abiotic stress responses, we carried out genetic screening using various mutant lines. Among them, the blh8 ($\b{B}$EL1-$\b{L}$ike $\b{H}$omeodomain $\underline{8}$) mutant specifically shows chlorotic phenotypes to ionic (specifically, $Na^+$ and $K^+$) stresses, but no differences in root growth. In addition, BLH8 is related to plant development and abiotic stress as predicted by a Graphical Gaussian Model (GGM) network program. It implies that BLH8 functions as a putative transcription factor related to abiotic stress responses. Collectively, our results show that gene network analysis is a useful tool for isolating genes involved in stress adaptation in plants.

Assessment of the Angstrom-Prescott Coefficients for Estimation of Solar Radiation in Korea (국내 일사량 추정을 위한 Angstrom-Prescott계수의 평가)

  • Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.221-232
    • /
    • 2016
  • Models to estimate solar radiation have been used because solar radiation is measured at a smaller number of weather stations than other variables including temperature and rainfall. For example, solar radiation has been estimated using the Angstrom-Prescott (AP) model that depends on two coefficients obtained empirically at a specific site ($AP_{Choi}$) or for a climate zone ($AP_{Frere}$). The objective of this study was to identify the coefficients of the AP model for reliable estimation of solar radiation under a wide range of spatial and temporal conditions. A global optimization was performed for a range of AP coefficients to identify the values of $AP_{max}$ that resulted in the greatest degree of agreement at each of 20 sites for a given month during 30 years. The degree of agreement was assessed using the value of Concordance Correlation Coefficient (CCC). When $AP_{Frere}$ was used to estimate solar radiation, the values of CCC were relatively high for conditions under which crop growth simulation would be performed, e.g., at rural sites during summer. The statistics for $AP_{Frere}$ were greater than those for $AP_{Choi}$ although $AP_{Frere}$ had the smaller statistics than $AP_{max}$ did. The variation of CCC values was small over a wide range of AP coefficients when those statistics were summarized by site. $AP_{Frere}$ was included in each range of AP coefficients that resulted in reasonable accuracy of solar radiation estimates by site, year, and month. These results suggested that $AP_{Frere}$ would be useful to provide estimates of solar radiation as an input to crop models in Korea. Further studies would be merited to examine feasibility of using $AP_{Frere}$ to obtain gridded estimates of solar radiation at a high spatial resolution under a complex terrain in Korea.

Comparison of Machine Learning-Based Greenhouse VPD Prediction Models (머신러닝 기반의 온실 VPD 예측 모델 비교)

  • Jang Kyeong Min;Lee Myeong Bae;Lim Jong Hyun;Oh Han Byeol;Shin Chang Sun;Park Jang Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.125-132
    • /
    • 2023
  • In this study, we compared the performance of machine learning models for predicting Vapor Pressure Deficits (VPD) in greenhouses that affect pore function and photosynthesis as well as plant growth due to nutrient absorption of plants. For VPD prediction, the correlation between the environmental elements in and outside the greenhouse and the temporal elements of the time series data was confirmed, and how the highly correlated elements affect VPD was confirmed. Before analyzing the performance of the prediction model, the amount and interval of analysis time series data (1 day, 3 days, 7 days) and interval (20 minutes, 1 hour) were checked to adjust the amount and interval of data. Finally, four machine learning prediction models (XGB Regressor, LGBM Regressor, Random Forest Regressor, etc.) were applied to compare the prediction performance by model. As a result of the prediction of the model, when data of 1 day at 20 minute intervals were used, the highest prediction performance was 0.008 for MAE and 0.011 for RMSE in LGBM. In addition, it was confirmed that the factor that most influences VPD prediction after 20 minutes was VPD (VPD_y__71) from the past 20 minutes rather than environmental factors. Using the results of this study, it is possible to increase crop productivity through VPD prediction, condensation of greenhouses, and prevention of disease occurrence. In the future, it can be used not only in predicting environmental data of greenhouses, but also in various fields such as production prediction and smart farm control models.

Estimation of Fresh Weight, Dry Weight, and Leaf Area Index of Soybean Plant using Multispectral Camera Mounted on Rotor-wing UAV (회전익 무인기에 탑재된 다중분광 센서를 이용한 콩의 생체중, 건물중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Kang, Kyeong-Suk;Kang, Dong-Woo;Zou, Kunyan;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.327-336
    • /
    • 2019
  • Soybean is one of the most important crops of which the grains contain high protein content and has been consumed in various forms of food. Soybean plants are generally cultivated on the field and their yield and quality are strongly affected by climate change. Recently, the abnormal climate conditions, including heat wave and heavy rainfall, frequently occurs which would increase the risk of the farm management. The real-time assessment techniques for quality and growth of soybean would reduce the losses of the crop in terms of quantity and quality. The objective of this work was to develop a simple model to estimate the growth of soybean plant using a multispectral sensor mounted on a rotor-wing unmanned aerial vehicle(UAV). The soybean growth model was developed by using simple linear regression analysis with three phenotypic data (fresh weight, dry weight, leaf area index) and two types of vegetation indices (VIs). It was found that the accuracy and precision of LAI model using GNDVI (R2= 0.789, RMSE=0.73 ㎡/㎡, RE=34.91%) was greater than those of the model using NDVI (R2= 0.587, RMSE=1.01 ㎡/㎡, RE=48.98%). The accuracy and precision based on the simple ratio indices were better than those based on the normalized vegetation indices, such as RRVI (R2= 0.760, RMSE=0.78 ㎡/㎡, RE=37.26%) and GRVI (R2= 0.828, RMSE=0.66 ㎡/㎡, RE=31.59%). The outcome of this study could aid the production of soybeans with high and uniform quality when a variable rate fertilization system is introduced to cope with the adverse climate conditions.