• Title/Summary/Keyword: Critical state model

Search Result 459, Processing Time 0.026 seconds

Variation of State Boundary Surface of Remolded Weathered Mudstone soil by spacing ratio (공간비에 의한 재성형 이암 풍화토의 상태경계면 변화)

  • Kim, Ki-Young;Jeon, Je-Sung;Lee, Jong-Wook;Kim, Je-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1095-1099
    • /
    • 2008
  • Critical state theory involves two state boundary surface. One is Roscoe surface and the other is Hvorslev surface. The shape of these boundary surface was changed because of several parameters : Critical state constant(M), spacing ratio (r) and critical state pore pressure coefficient($\wedge$). As these constants make difference to each model and the way of solution, they may affect the shape of state boundary surface. Specially, spacing ratio (r) is important. On this study, triaxial compression test was performed using remolded weathered mudstone soil and investigated variation of state boundary surface because of spacing ratio. In the results of prediction, critical state point was located highly and the shape of boundary surface was changed more tightly curve as decreasing spacing ratio.

  • PDF

Study on MCC and Hvorslev-MCC Models (MCC 모델 및 Hvorslev-MCC 모델의 비교 연구)

  • Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.615-619
    • /
    • 2007
  • In this study, the MCC(modified Cam-Clay) model and the Hvorslev-MCC model, recently developed based on the critical state theory and with relatively few model parameters, were investigated by comparing the model predictions with the result of the conventional triaxial compression test strictly performed in laboratory. The discrepancy of the prediction capacities of the models exists on the heavily over-consolidated specimen. The Hvorslev-MCC model accurately predicts the peak strength envelope for heavily over-consolidated clayey specimens on the dry side of the critical state since it adopts the Hvorslev surface in the supercritical region other than the ellipse of the MCC model.

  • PDF

Time-Based MDA Architecture Modeling for Safety-Critical Systems (안전필수 시스템을 위한 시간기반 MDA 아키텍처 모델링)

  • Lim, Yoojin;Choi, Eunmi
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.4
    • /
    • pp.443-453
    • /
    • 2012
  • In order to minimize the damage from system failures, systems over various fields are requested to contain the safety-critical features. In this paper, we deliver the considerable issues, especially, in the cyber physical systems that is recently used as a safety-critical system, as well as we propose the model driven architecture based on time as its the important factor. Based on meta-modeling approach, we introduce the time-based architecture which is associated with deadline, transition state, and threshold, and also we work out a design for this by using model driven architecture. We propose a realizable safety-critical architecture by means of showing failure handling components with safety transaction model from the meta-model. In the detailed models and the example, we design a basic safety processing state, a multiple safety processing state, and a compound safety processing state for completing the safety-critical system architecture.

Asymptotic Gaussian Structures in a Critical Generalized Curie-Wiss Mean Field Model : Large Deviation Approach

  • Kim, Chi-Yong;Jeon, Jong-Woo
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.515-527
    • /
    • 1996
  • It has been known for mean field models that the limiting distribution reflecting the asymptotic behavior of the system is non-Gaussian at the critical state. Recently, however, Papangelow showed for the critical Curie-Weiss mean field model that there exist Gaussian structures in the asymptotic behavior of the total magnetization. We construct Gaussian structures existing in the internal fluctuation of the system for the critical case of a generalized Curie-Weiss mean field model.

  • PDF

Incorporation of Henry-Fauske Critical Flow Model into TRAC-PF1

  • Hwang, Tae-Suk;Lee, Jae-Hoon;Yoo, Byung-Tae;Cho, Chang-Sok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.713-718
    • /
    • 1998
  • Henry-Fauske critical flow model was incorporated into TRAC-PF1 to correct some errors in the original TRAC-PFI critical flow model. Henry-Fouske mode1 was numerically implemented and tested against steady-state steam-water experimental data. The model was incorporated into TRAC-PFI and code assessment against Marviken Critical Flow Tests 15 and 24 was carried out. Calculations using RELAP5/MOD3 were also made for comparison. Ten cases were calculated each test and sensitivity study on nodalization as well as critical flow or model was performed Stand-alone numerical model test and code assessment were done for verification and validation of code modification. Calculation results show that the modified version of TRAC-PF1 has a capability to model critical flow correctly in various conditions.

  • PDF

Revision of Modified Cam Clay Failure Surface Based on the Critical State Theory (한계 상태 기반 수정 Modified Cam Clay 파괴면)

  • Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.5-15
    • /
    • 2020
  • This paper proposes a revised Modified Cam Clay type failure surface based on the critical state theory. In the plane of the mean effective and von Mises stresses, the original Modified Cam Clay model has an elliptic failure surface which leads the critical-state mean effective stress to be always half of the pre-consolidation mean effective stress without hardening and evolution rules. This feature does not agree with the real mechanical response of clay. In this study, the preconsolidation mean effective stress only reflects the consolidation history of the clay whereas the critical state mean effective stress only relies on the currenct void ratio of clay. Therefore, the proposed failure surface has a distorted elliptic shape without any fixed ratio between the preconsolidation and critical state mean effective stresses. Numerical simulations for various clays using failure surfaces as yield surface provide mechanical responses similar to the experimental data.

Parametric study using finite element simulation for low cycle fatigue behavior of end plate moment connection

  • Lim, Chemin;Choi, Wonchang;Sumner, Emmett A.
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.57-71
    • /
    • 2013
  • The prediction of the low cycle fatigue (LCF) life of beam-column connections requires an LCF model that is developed using specific geometric information. The beam-column connection has several geometric variables, and changes in these variables must be taken into account to ensure sufficient robustness of the design. Previous research has verified that the finite element model (FEM) can be used to simulate LCF behavior at the end plate moment connection (EPMC). Three critical parameters, i.e., end plate thickness, beam flange thickness, and bolt distance, have been selected for this study to determine the geometric effects on LCF behavior. Seven FEMs for different geometries have been developed using these three critical parameters. The finite element analysis results have led to the development of a modified LCF model for the critical parameter groups.

Effects of Critical Minimum Depth in the Coastal Region on Storm Surges using a Three-Dimensional Numerical Experiment (폭풍해일 예측 수치실험에 미치는 연안역 임계최소수심의 영향)

  • Hong, Chul-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.2
    • /
    • pp.168-173
    • /
    • 2014
  • The effect of critical minimum depth in the coastal region on storm surges was examined using a three-dimensional primitive equation model (POM). Case studies using numerical experiments in a small coastal bay in the southern sea of Korea (Hanam Bay) have examined the 'critical depth' (CD) that stabilizes the numerical calculations. Dependence of the CD of typhoon tracks and tidal components such as M2, S2, O1, and K1 were examined. The model results clearly demonstrated that the numerically unstable state of the calculation was caused by the coarse resolution of sea surface elevation.

Flutter and buffeting responses of the Shantou Bay Bridge

  • Gu, M.;Chen, W.;Zhu, L.D.;Song, J.Z.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.4 no.6
    • /
    • pp.505-518
    • /
    • 2001
  • Shantou Bay Bridge is the first long-span suspension bridge in China. Because of its location near the Shantou Seaport and its exposure to high typhoon winds, wind-resistant studies are necessary to be made. In this paper, critical flutter wind speeds and buffeting responses of this bridge at its operation and main construction stages are investigated. The Buffeting Response Spectrum method is first briefly presented. Then the sectional model test is carried out to directly obtain the critical flutter wind speed and to identify the flutter derivatives, which are adopted for the later analysis of the buffeting responses using the Buffeting Response Spectrum method. Finally the aeroelastic full bridge model is tested to further investigate the dynamic effects of the bridge. The results from the tests and the computations indicate that the flutter and buffeting behaviors of the Shantou Bay Bridge are satisfied.

Numerical Simulation of Cone Penetration Tests in Sand Ground Using Critical State Mohr Coulomb Plasticity Model (한계상태 Mohr Coulomb 소성 모델을 활용한 콘관입시험의 수치적 모사)

  • Woo, Sang Inn;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.2
    • /
    • pp.37-51
    • /
    • 2019
  • This study focuses on the numerical simulations of the cone penetration tests in a sand ground. The mechanical responses of sand were described using the modified Mohr Coulomb plasticity model based on the critical state soil mechanics. In the plasticity model, the dilatancy angle was not a constant, but a function of the distance to the critical state line from the current state of void ratio and mean effective stress. To simulate cone penetration tests numerically, this study relied on Lagrangian finite element method under the axisymmetric condition. To enable penetration of the cone penetrometer without tearing elements along the symmetric axis, the penetration guide concept was adopted in this study. The results of numerical simulations on the calibration chamber cone penetration tests had good agreement with the experimental results.