• Title/Summary/Keyword: Critical properties

Search Result 2,266, Processing Time 0.031 seconds

Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

  • Watanabe, Yutaka
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2008
  • Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of "physical properties of water" in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena.

Tribological properties of MoS$_2$ film deposited by RF magnetron sputtering (RF 마그네트론 스퍼터링법으로 제조된 MoS$_2$ 박막의 윤활 특성에 관한 연구)

  • 안영환;김선규
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.4
    • /
    • pp.266-272
    • /
    • 2000
  • Sputtered $MoS_2$ thin films provide lubrication and wear improvements for vacuum and space applications. In this study, deposition of $MoS_2$ thin films by R.F. magnetron sputtering was studied with regard to the micro-structural change of $MoS_2$ film and mechanical properties. The coating parameters such as the working pressure, the RF power, the substrate temperature, the etching time were varied to determine how these parameters affected the film morphology and mechanical properties of deposited films. The best wear properties and critical load were observed with the film deposited at $70^{\circ}C$, 1.0$\times$$10^{ -3}$ Torr, 170W and 1 hour deposition time. The critical load increased with the increase of sputter etching time.

  • PDF

Effects of Sintering Temperature and SiC Contents on the Microstructure and Superconducting Properties of In-situ $MgB_2$ Wires (In-situ $MgB_2$ 선재의 소결온도와 SiC 함량에 따른 미세조직 및 초전도 특성 연구)

  • Hwang, Soo-Min;Park, Eui-Cheol;Park, Si-Hong;Jang, Seok-Hern;Kim, Kyu-Tae;Lim, Jun-Hyung;Joo, Jin-Ho;Kang, Won-Nam;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.68-73
    • /
    • 2007
  • We fabricated the in-situ $MgB_2$ wires using the powder-in-tube method and investigated the effects of sintering temperature and SiC contents on the microstructure and superconducting properties. Pure $MgB_2$ wires and 5, 10, 20 wt.% SiC doped $MgB_2$ wires were sintered at $600-1000^{\circ}C$ for 30 minutes in Ar atmosphere. We found that $MgB_2$ phase was mostly formed at the sintering temperature of $700^{\circ}C$ and above, and the critical temperature ($T_c$) increased with increasing sintering temperature. For the $MgB_2$ sintered at $850^{\circ}C$, the highest critical current density ($J_c$) was obtained to be $3.7{\times}10^5\;A/cm^2$ at 5 K and 1.6 T by a magnetic properties measurement system (MPMS). The addition of SiC to the $MgB_2$ wires changed microstructure and critical properties. SEM observation showed that the $MgB_2$ core had considerable micro-cracks in undoped wire and the density of micro-cracks decreased with increasing SiC contents. The critical temperature decreased as the SiC contents increased, on the other hand, the critical current density of SiC doped $MgB_2$ wires in high magnetic field was enhanced compared to that of undoped $MgB_2$ wires.

  • PDF

Modeling Of Critical Flux Conditions In Crossflow Microfiltration

  • Kim, Su-han;Park, Hee-kyung
    • Water Engineering Research
    • /
    • v.1 no.2
    • /
    • pp.119-127
    • /
    • 2000
  • In the process of crossflow microfiltration, a deposit of cake layer tends to form on the membrane, which usually controls the performance of filtration. It is found, however, that there exist a condition under which no deposit of cake layer is made. This condition is called the sub-critical flux condition, and the critical flux here means a flux below which a decline of flux with time due to the deposit of cake layer does not occur. In order to study the characteristics of the critical flux, a numerical model is developed to predict the critical flux condition, and is verified with experimental results. For development of the model, the concept of effective particle diameter is introduced to find a representative size of various particles in relation to diffusive properties of particles. The model is found to be in good match with the experimental results. The findings from the use of the model include that the critical flux condition is determined by the effective particle diameter and the ratio of initial permeate flux to crossflow velocity.

  • PDF

Critical Suspension Condition of Particles in a Shaking Vessel of Solid-Liquid System (고-액계 진동교반에서 입자의 부유화 한계조건)

  • Lee, Young-Sei;Kim, Moon-Gab;Kato, Yoshihito
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.73-81
    • /
    • 1999
  • Shake mixing has been widely used in cell culture. The mixing performance for shake mixing, however, has not been reported quantitatively. The critical circulating frequency and the power consumption for complete suspension of particles, based on the definition of Zwietering, were measured in a shaking vessel containing a solid-liquid system. The critical suspension frequency was correlated by the equation from Baldi's particle suspension model modified with the physical properties of the particles. Critical suspension frequency was correlated as following ; $$N_{JS}={\frac{0.58\;d{_p}^{0.06}(g{\Delta}{\rho}/{\rho}_L)^{0.004}X^{0.03}}{D^{0.35}d^{0.17}{\upsilon}^{0.04}}}$$ The power consumption at the critical suspension condition in the shaking vessel was less than that in an agitated vessel with impeller.

  • PDF

Effect of Annealing Conditions on Properties of BSCCO-2212 Bulk (열처리조건이 BSCCO-2212 벌크의 특성에 미치는 영향)

  • Kim, Kyu-Tae;Kim, Chan-Joong;Lim, Jun-Hyung;Park, Eui-Cheol;Park, Jin-Hyun;Joo, Jin-Ho;Hyun, Ok-Bae;Kim, Hye-Rim
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.193-198
    • /
    • 2008
  • We fabricated BSCCO-2212(2212) bulk superconductors by using a casting process and evaluated the superconducting properties. The effects of annealing conditions on microstructure and critical properties were studied. It was found that the homogeneous and uniform microstructure improved the critical properties and the microstructures of ingot and annealed rods were different with the size of 2212 rod and tube. The critical current($I_c$) of rods increased with increasing annealing time, probably due to increased grain size of 2212. Annealing time of the highest $I_c$ for the smaller rod(diameter of 10 mm) was shorter(150 hr) than that of the larger rod(diameter of 16 mm, 400 hr). This size effect seems to be related to different grain sizes of the intermediate phases such as 2201 and secondary phases in the ingot. In addition, we fabricated 2212 tubes from the rod by removing the center region which contained inhomogeneous microstructures. The $I_c$ of 2212 tube with the outer diameter of 16 mm and the thickness of 2 mm was measured to 844 A, which corresponds to the critical current density of $1017\;A/cm^2$ at 77 K.

  • PDF

The effects of limestone powder and fly ash as an addition on fresh, elastic, inelastic and strength properties of self-compacting concrete

  • Hilmioglu, Hayati;Sengul, Cengiz;Ozkul, M. Hulusi
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.93-102
    • /
    • 2022
  • In this study, limestone powder (LS) and fly ash (FA) were used as powder materials in self-compacting concrete (SCC) in increasing quantities in addition to cement, so that the two powders commonly used in the production of SCC could be compared in the same study. Considering the reduction of the maximum aggregate size in SCC, 10 mm or 16 mm was selected as the coarse aggregate size. The properties of fresh concrete were determined by slump flow (including T500 time), V-funnel and J-ring experiments. The experimental results showed that as the amount of both LS and FA increased, the slump flow also increased. The increase in powder material had a negative effect on V-funnel flow times, causing it to increase; however, the increase in FA concretes was smaller compared to LS ones. The increase in the powder content reduced the amount of blockage in the J-ring test for both aggregate sizes. As the hardened concrete properties, the compressive and splitting strengths as well as the modulus of elasticity were determined. Longitudinal and transverse deformations were measured by attaching a special frame to the cylindrical specimens and the values of Poisson's ratio, initiation and critical stresses were obtained. Despite having a similar W/C ratio, all SCC exhibited higher compressive strength than NVC. Compressive strength increased with increasing powder content for both LS and FA; however, the increase of the FA was higher than the LS due to the pozzolanic effect. SCC with a coarse aggregate size of 16 mm showed higher strength than 10 mm for both powders. Similarly, the modulus of elasticity increased with the amount of powder material. Inelastic properties, which are rarely found in the literature for SCC, were determined by measuring the initial and critical stresses. Crack formation in SCC begins under lower stresses (corresponding to lower initial stresses) than in normal concretes, while critical stresses indicate a more brittle behavior by taking higher values.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

Cubic Equation of State Analysis for the Prediction of Supercritical Thermodynamic Properties of Hydrocarbon Fuels with High Critical Compressibility Factor (고 임계 압축인자를 갖는 탄화수소 연료의 초임계 열역학적 물성 예측을 위한 상태방정식 분석)

  • Jae Seung Kim;Jiwan, Seo;Kyu Hong Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.24-34
    • /
    • 2022
  • In order to predict the cooling performance of a regenerative cooling channel using hydrocarbon fuel operating in the supercritical region, it is essential to predict the thermodynamic properties. In this study, a comparative analysis was performed on two-parameter equations of state (SRK(Soave-Redlich-Kwong), PR(Peng-Robinson) equations of state) and three-parameter equations of state (RK-PR equations of state) to appropriately predict density and specific heat according to the critical compressibility factor of polymer hydrocarbons. Representatively, n-dodecane fuel with low critical compressibility factor and JP-10 fuel with high critical compressibility factor were selected, and an appropriate equation of state was presented when predicting the thermodynamic properties of the two fuels. Finally, the prediction results of density and specific heat were compared and verified with NIST REFPROP data.

A Study on Critical Angle of Metamaterial with Drude Model (Drude 모형 특성을 갖는 메타 물질의 임계각에 관한 연구)

  • Lee, Kyung-Won;Hong, Ic-Pyo;Chung, Yeong-Chul;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1020-1027
    • /
    • 2008
  • In this paper, the refraction angles and the critical angles of metamaterials which is assumed by the Drude model are analytically studied. To analyze the electromagnetic reflection and the transmission properties of metamaterial slab, we used "-1" for the permeability and the permittivity at 30 GHz in Drude model for metamaterials in this paper, respectively. Due to the variation of signes of material constants for frequency ranges in Drude model, the derived refraction angle and the critical angles for each frequency ranges are differently observed. The results in this paper show that the properties the refraction angles and the critical angles for the broadband in metamaterials can be used to understand the electromagnetic properties of metamaterials and microwave applications.