• Title/Summary/Keyword: Critical properties

Search Result 2,261, Processing Time 0.039 seconds

Evaluation of Adhesion Properties of Arc PVD Coatings on Non-Nitrided and Nitrided Various Substrates (모재의 재질 및 질화층 형성에 따른 Arc PVD 코팅의 접합특성 평가)

  • Lee Jung-Min;Jun Sung-Jin;Ko Dae-Cheol;Kim Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1179-1186
    • /
    • 2006
  • This paper was designed to assess the adhesive properties of hard coatings on non-nitrided and nitrided various tool steels. Estimations of adhesion were done to scratch test which is mainly used in hard coating. The critical load$(L_c)$ between coating and substrate is defined through analysis of frictional load vs. normal load curve, signals of acoustic emission and optical observations. Coatings employed in this study are TiN, CrN and TiAlN, tools as substrates are STD11, STD61 and SKH51. It was classified to substrates with/without intermediate nitrided layer and hard coatings on substrate were deposited by arc PVD. Results showed that harder substrates and coatings give higher values of critical loads.

Surface effects on vibration and buckling behavior of embedded nanoarches

  • Ebrahimi, Farzad;Daman, Mohsen;Fardshad, Ramin Ebrahimi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The present paper deals with the free vibration and buckling problem with consideration of surface properties of circular nanobeams and nanoarches. The Gurtin-Murdach theory is used for investigating the surface effects parameters including surface tension, surface density and surface elasticity. Both linear and nonlinear elastic foundation effect are considered on the circular curved nanobeam. The analytically Navier solution is employed to solve the governing equations. It is obviously detected that the natural frequencies of a curved nanobeams is substantially influenced by the elastic foundations. Besides, it is revealed that by increasing the thickness of curved nanobeam, the influence of surface properties and elastic foundations reduce to vanished, and the natural frequency and critical buckling load turns into to the corresponding classical values.

Fatigue Life Prediction for Resistance Spot Weldment of Aluminum Alloy Sheet (알루미늄 합금판 저항 점용접부의 피로수명 예측)

  • 장건익;안병국;김동건
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.116-124
    • /
    • 2002
  • The fatigue life is predicted on tensile-shear spot weldment made from Al-Mg alloy sheet with thickness of 0.8mm using Mitchell's method and uniform material law by $B{\ddot{a}}umel$ and Seeger based on local strain approach. The fatigue properties of critical HAZ region are estimated from the tensile property using simple hardness method. To predict the fatigue life of spot weldment, the local stresses and strains at the potential critical region are estimated by Neuber's rule. The predicted fatigue life based on uniform material law using HAZ's material properties provides good results within a factor of 3, conservatively.

Property Improvement of YBCO Thick films by EPD with Addition of PEG (PEG 첨가에 의한 YBCO 전착후막의 특성 향상)

  • 소대화;전용우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1125-1130
    • /
    • 2003
  • The electrophoretic deposition method using the suspension solution with additives under the electric potential was applied for the fabrication of YBCO superconductor wire. This method was able to simplify the fabrication facilities, and produce an uniform and dense thick film. To improve the critical current density of deposited films, the additive PEGs(Poly Ethylene Glycole) with the molecular weight of 600, 1000 and 3400 were used as chemical binders for the suspension solution. The organic additive (PEG) showed better effects to the properties of YBCO superconductor wire. The PEG improved the adhesion between superconductor particles and suppressed the crack on the surface, which enhanced the surface uniformity and density of YBCO deposited film. It was found that acetone suspension solution showed better deposition properties than the others. The samples fabricated in the solution with the additive, 8 vol.% of 1% PEG(1000), showed the highest critical current density measured as 2300∼2400 A/$\textrm{cm}^2$ at 77 K, 0 T.

Effect of Microstructure on the Properties of High Strength Grouts (고강도 그라우트재의 특성에 미치는 미세구조의 영향)

  • 정민철;남기웅;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.6
    • /
    • pp.609-616
    • /
    • 1994
  • Investigation for the high strength grouts using ordinary cement mortar, melamine formaldehyde condensate (MFC) with various admixtures was carried out. The physical properties of the grouts were investigated through the observation of the microstructure and the application of fracture mechanics. When the lime stone and fly ash was added with 6 wt% to the grouts, the compressive strength was about 72 MPa, 69 MPa respectively, and the flexural strength was about 11.9 MPa, 11.4 MPa respectively, the Young's modulus was about 4.3 GPa, 3.9 GPa, and the critical stress intensity was about 7.3 ×10-1MNm-1.5, 6.8×10-1MNm-1.5 respectively. When the silica fume was added with 6 wt% to the grouts, the compressive strength and the flexural strength were 81 MPa, 12.3 MPa, Young's modulus was 4.8 GPa and the critical stress intensity was about 8.4×10-1MNm-1.5.

  • PDF

Effect of silver oxide additions on YBCO thick film properties

  • Soh, Dea-Wha;Li, Ying-Mei;Cho, Yong-Joon;Korobova, N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.81-84
    • /
    • 2001
  • The effect of silver oxide (14 wt.%) addition to YBCO compounds and electrophoretic deposition of composite particles prepared by solid phase reaction have been investigated. The results were compared with those for as-processed samples with YBCO films on Ag wire substrate. Our experiments show that the adhesion, microstructure changes, superconducting properties of these films is sensitive to the silver content and sintering conditions. Adding a small amount of PEG tends to remove cracks in the YBCO and (YBCO + Ag) films, which develop during the heating process. An attempt has been made to explain the experimental observations regarding variation of critical current density with the YBCO and (YBCO + Ag) films.

  • PDF

Evaluation of Adhesion properties of Arc PVD coatings for Micro Forming Die (미세성형용 금형 Arc PVD 코팅의 밀착력 평가)

  • Lee J. M.;Ko D. C.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.186-189
    • /
    • 2005
  • This paper was designed to assess the adhesive properties of hard coatings on non-nitrided and nitrided various tool steels. Estimations of adhesion were done to scratch test which is mainly used in hard coating. The critical load(Lc) between coating and substrate is defined through analysis of frictional load vs. normal load curve, signals of acoustic emission and optical observations. Coatings employed in this study are TiN, CrN and TiAlN, tools as substrates are STD11, STD61 and SKH51. It was classified to substrates with/without nitrided layer and hard coatings on substrate were deposited by arc PVD. Results showed that harder substrates and coatings give higher values of critical loads.

  • PDF

Interfacial Reaction and Shear Properties with Reflow Conditions for In-48Sn Solder on BGA Package (리플로우 조건에 따른 In-48Sn 솔더와 BGA 패키지의 계면반응 및 전단 특성 변화)

  • 구자명;이영호;김대곤;김대업;정승부
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.193-195
    • /
    • 2003
  • Micro-structure and shear properties with reflow conditions, reflow temperature and time, for In-48Sn solder on BGA package were examined at the temperature between 140 and 170$^{\circ}C$ for 10 to 3600sec. With increasing reflow temperature and time, the thickness of intermetallic compound formed between solder and pad increased. Shear test indicated shear force increased in the range to a critical value of reflow time, and decreased over a critical reflow time. With increasing reflow temperature and time, the crater occurred on fracture surface because of a increase of crater by voids and IMC particles precipitated in solder.

  • PDF

Wetting Properties of Biopolyester Films Prepared by Thermo-Compression Method

  • Rhim, Jong-Whan;Hong, Seok-In
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.234-237
    • /
    • 2007
  • Water resistance of three biopolyester films, such as poly-L-lactate (PLA), poly-hydroxybutyrate-co-valerate (PHBV), and Ecoflex, and low density polyethylene (LDPE) film was investigated by measuring contact angle of various probe liquids on the films. The properties measured were initial contact angle of water, dynamic change of the water contact angle with time, and the critical surface energy of the films. Water contact angle of the biopolyester films ($57.62-68.76^{\circ}$) was lower than that of LDPE film ($85.19^{\circ}$) indicating biopolyester films are less hydrophobic. The result of dynamic change of water contact angle also showed that the biopolyester films are less water resistant than LDPE film, but much more water resistant than cellulose-based packaging materials. Apparent critical surface energy for the biopolyester films (35.15-38.55 mN/m) was higher than that of LDPE film (28.59 mN/m) indicating LDPE film is more hydrophobic.