• Title/Summary/Keyword: Critical potential

Search Result 1,674, Processing Time 0.03 seconds

Microbial Modeling in Quantitative Risk Assessment for the Hazard Analysis and Critical Control Point (HACCP) System: A Review

  • Min, Sea-Cheol;Choi, Young-Jin
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.279-293
    • /
    • 2009
  • Quantitative risk assessments are related to implementing hazard analysis and critical control points (HACCP) by its potential involvement in identifying critical control points (CCPs), validating critical limits at a CCP, enabling rational designs of new processes, and products to meet required level of safety, and evaluating processing operations for verification procedures. The quantitative risk assessment is becoming a standard research tool which provides useful predictions and analyses on microbial risks and, thus, a valuable aid in implementing a HACCP system. This paper provides a review of microbial modeling in quantitative risk assessments, which can be applied to HACCP systems.

Analyses on the recriticality and sub-critical boron concentrations during late phase of a severe accident of pressurized water reactors

  • Yoonhee Lee;Yong Jin Cho;Kukhee Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3241-3251
    • /
    • 2023
  • The potential for recriticality and sub-critical boron concentrations is analyzed during the relocation of the fuel rods in the assembly, which we call late phase of a severe accident, via coupling between MELCOR and whole-core Monte Carlo analyses by Serpent 2. The recriticality, initiated during the early phase, is found to maintain when the fuel assemblies containing intact fuel rods are submerged by the cooling water. It is also found that the effect of the negative reactivity insertion via remaining fission products in the fuel debris increases as the burnup increases. The sub-critical boron concentrations during the late phase are found to be 76~544 ppm lower than those during the early phase. Therefore, it can be concluded that the boron concentration that prevents recriticality not only during the early phase but also during the late phase is the sub-critical boron concentration during the early phase.

A Case Study on Analysis of Landslide Potential and Triggering Time at Inje Area using a RTI Warning Model (RTI 경보모델을 이용한 강원도 인제지역의 산사태 가능성 및 발생시간 분석 사례 연구)

  • Chae, Byung-Gon;Liu, Ko-Fei;Cho, Yang-Chan
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.191-196
    • /
    • 2008
  • This study is a case study for application of the RTI warning model to Korea which was previously developed to predict landslide potential and occurrence time during a rainfall event. The rainfall triggering index (RTI) is defined as the product of the rainfall intensity I (mm/hr) and the effective accumulated rainfall $R_t$ (mm). This index is used to evaluate the landslide and debris-flow occurrence potential at time t during a rainfall event. The upper critical value ($RTI_{UC}$) of RTI and the lower critical value ($RTI_{LC}$) of RTI can be determined by historical rainfall data of a certain area. When the rainfall intensity exceeds the upper critical value, there are high potential to occur land-slides. The analysis result can predict landslide occurrence time of an area during a rainfall event as well as land-slide potential. The result can also be used as an important data to issue early-warning of landslides. In order to apply the RTI warning model to Korea this study analyzed rainfall data and landslides data in Inje county, Gangwon province, Korea from July 13 to July 19, 2006. According to the analysis result, the rainfall intensity exceeded the upper critical value 23 hours ago, 11 hours ago, and 9 hours ago from 11:00 in the morning, July 16. Therefore, landslide warnings would be issued three times for people evacuation for avoiding or reducing hurts and dam-ages from landslides in mountainous areas of Inje.

Ecophysiological Interpretations on the Water Relations Parameters of Trees (IV) - Relation between Leaf Conductance and Water Potential, Relative Water Content, and Turgor Pressure in Several Conifers - (수목(樹木)의 수분특성(水分特性)에 관한 생리(生理)·생태학적(生態學的) 해석(解析(IV) - 몇 종(種)의 침엽수(針葉樹)에 있어서 Leaf Conductance와 Water Potential, 상대함수율(相對含水率), 팽압(膨壓)과의 관계(關係) -)

  • Han, Sang Sup;Jeon, Doo Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.63 no.1
    • /
    • pp.28-34
    • /
    • 1984
  • This study was to elucidate the relation between the water relations parameters obtained from P-V curves and stomatal closure. The results obtained are as follows: 1) The water potential at incipient plasmolysis obtained from P-V curves was similar to the water potential at critical stomatal closure. 2) The critical stomatal closure of sun leaves appear at -21 bar (-17 bar, shade leaves) in Pinus koraiensis, -20 bar in Pinus rigida, -22 bar in Pinus densiflora, and -24 bar in Larix leptolepis. On a relative water content basis, the critical stomatal closures of sun leaves appear at 85% (82%, shade leaves) in Pinus kordiensis, 77% in Pinus ragida, 85% in Pinus densiflora, and 70% in Larix leptolepis. 3) The incipient stomatal closures of sun leaves appear at -14 bar (-12 bar, shade leaves) in Pinus koraiensis, -10 bar in Pinus rigida, -15 bar in Pinus densiflora, and -6 bar in Larix leptolepis. On a relative water content basis, the incipient stomatal closures of sun leaves appear at 90% in Pinus koraiensis, 93% in Pinus rigida, 90% in Pinus densiflora, and 93% in Larix leptolepis. 4) The leaf conductance was increased by increase in volume-averaged turgor pressure was linearly increased by increase in relative water content.

  • PDF

Estimation Method of Wind Resource Potential Using a National Wind Map (국가바람지도에 의한 풍력자원 잠재량 산출방법)

  • Kim, Hyun-Goo;Jang, M.S.;Kim, E.I.;Lee, H.W.;Lee, S.H.;Kim, D.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.332-333
    • /
    • 2008
  • This paper presents an estimation method of national wind resource potential using a national and GIS(Geographical Information System). The wind resource potential is classified into theoretical, geographical and technical potentials and each category narrows down the previous definition by excluding impossible area to be developed as a wind farm using GIS datasets for onshore and offshore. As a basic unit of wind energy potential at a certain area, API(Average Power Intercepted) is calculated from WPD(Wind Power Density) given by a national wind map which is established by numerical wind simulation, so that a logical and relatively accurate potential estimation is possible comparing with other methods based on a field measurement interpolation which is inevitable to avoid critical assumptions.

  • PDF

A study on the Correlation Hazard Analysis for Signaling System Safety (안전성 확보를 위한 위험원 분석 기법간 상관관계에 대한 연구)

  • Han, Chan-Hee;Lee, Young-Soo;Ahn, Jin;Jo, Woo-Sic
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.638-645
    • /
    • 2007
  • Computers are increasingly being introduced into safety and reliability critical systems. The safe and reliable operation of these systems cannot be taken for granted. Malfunctions of these systems can have potentially catastrophic consequences and they have already been involved in serious accidents. Software fault prevention, fault tolerance, fault removal and fault forecasting are the techniques to be used, implemented and verified for embedded software in critical systems as the contributors to safety and reliability of the software. To use them when developing a software product, a relationship must be established between them and the development processes, the methods and techniques to be used to develop software, as well as with the different product architectures. Railroad signaling system software is a safety-critical embedded software with realtime and high reliability requirements. The primary purpose of the safety management is to prevent the loss of lives or physical damages arising from potential hazards in the railroad signaling system. This study provides a systematic approach to analysis of potential hazards for their management during the system life cycle to assure the identification and definition of the most appropriate hazards.

  • PDF

Evaluation on Resistance to Pitting Corrosion of Fe-Cr Alloys via Measurement of the Critical Pitting Temperature (CPT) and Potentiodynamic Polarization According to KS D 0238 (wet, dry), ASTM G 61 and ISO 17475 Standards (Fe-Cr합금의 공식저항성 평가를 위하여 다양한 규격(KS D 0238, ASTM G 61, ISO 17475)에 따라 실시한 동전위 분극 시험과 임계공식온도 측정시험)

  • Kang, Su-Yeon;Lee, Jae-Bong;Kim, Yeong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.635-643
    • /
    • 2009
  • The resistance to pitting corrosion of Fe-Cr alloys was evaluated by performing potentiodynamic polarization and critical pitting temperature (CPT) tests. For the potentiodynamic polarization tests, various standards were applied, i.e., KS D 0238 (wet, dry), ASTM G 61, and ISO 17475, showing different potentiodynamic polarization results including pitting potentials. ASTM G 61 and ISO 17475 standards presented relatively higher pitting potential while KS D 0238 (dry) indicated lower values than the others. Effects of surface roughness, scan rates, and exposure time to air before tests were also investigated. CPT tests were performed under two different applied potentials, 300 m$V_{SCE}$ and 200 m$V_{SCE}$ in deaerated 1 M NaCl aqueous solution. CPT values and the polarization test results showed a linear relationship.

Warning Signal for Limit Cycle Flutter of 2D Airfoil with Pitch Nonlinearity by Critical Slowing Down (비틀림 비선형성을 갖는 2차원 익형의 Critical Slowing Down 을 이용한 Limit Cycle Flutter 예측 인자)

  • Lim, Joosup;Lee, Sang-Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • In this paper, limit cycle flutter induced by Hopf bifurcation is studied with nonlinear system analysis approach and observed for the critical slowing down phenomenon. Considering an attractor of the dynamics of a system, when a small perturbation is applied to the system, the dynamics converge toward the attractor at some rate. The critical slowing down means that this recovery rate approaches zero as a parameter of the system varies and the size of the basin of attraction shrinks to nil. Consequently, in the pre-bifurcation regime, the recovery rates decrease as the system approaches the bifurcation. This phenomenon is one of the features used to forecast bifurcation before they actually occur. Therefore, studying the critical slowing down for limit cycle flutter behavior would have potential applicability for forecasting those types of flutter. Herein, modeling and nonlinear system analysis of the 2D airfoil with torsional nonlinearity have been discussed, followed by observation of the critical slowing down phenomenon.

Nonlinear aerodynamic stability analysis of orthotropic membrane structures with large amplitude

  • Zheng, Zhoulian;Xu, Yunping;Liu, Changjiang;He, Xiaoting;Song, Weiju
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.401-413
    • /
    • 2011
  • The aerodynamic stability of orthotropic tensioned membrane structures with rectangular plane is theoretically studied under the uniform ideal potential flow. The aerodynamic force acting on the membrane surface is determined by the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics. Then, based on the large amplitude theory and the D'Alembert's principle, the interaction governing equation of wind-structure is established. Under the circumstances of single mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction equation into a system of second order nonlinear differential equation with constant coefficients. Through judging the stability of the system characteristic equation, the critical divergence instability wind velocity is determined. Finally, from different parametric analysis, we can conclude that it has positive significance to consider the characteristics of orthotropic and large amplitude for preventing the instability destruction of structures.

Correlation of the Green Microstructure of ZrO2 with the Colloid/Interface Variables (Zirconia성형체의 미세구조와 콜로이드/계면변수와의 상관관계에 대한 분석)

  • 장현명;한규호;이기강;정한남
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.91-101
    • /
    • 1990
  • The green microstructure and sintering behavior of ZrO2 were analyzed in terms of kinetic stability (measured by the stability ratio ; W) and interfacial characteristics of colloidal suspension. Green density and the most frequent pore radius(MFPR) of green body were directly correlated with the stability ratio. These observations were explained using a concept of the critical stability ratio(Wc) and the potential energy of two interacting particles in colloidal suspension. Analysis of the data also indicates that the potential energy barrier between two interacting colloid particles should be higher than its critical value for a fabrication of ZrO2 green body with dense and uniform microstructure. Besides, we have successfully applied a concept of the donoracceptor interaction to increase the kinetic stability of ZrO2 slip and density of green body.

  • PDF