• Title/Summary/Keyword: Critical generators

Search Result 70, Processing Time 0.026 seconds

Analysis of Multi-Agent-Based Adaptive Droop-Controlled AC Microgrids with PSCAD: Modeling and Simulation

  • Li, Zhongwen;Zang, Chuanzhi;Zeng, Peng;Yu, Haibin;Li, Hepeng;Li, Shuhui
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.455-468
    • /
    • 2015
  • A microgrid (MG) with integrated renewable energy resources can benefit both utility companies and customers. As a result, they are attracting a great deal of attention. The control of a MG is very important for the stable operation of a MG. The droop-control method is popular since it avoids circulating currents among the converters without using any critical communication between them. Traditional droop control methods have the drawback of an inherent trade-off between power sharing and voltage and frequency regulation. An adaptive droop control method is proposed, which can operate in both the island mode and the grid-connected mode. It can also ensure smooth switching between these two modes. Furthermore, the voltage and frequency of a MG can be restored by using the proposed droop controller. Meanwhile, the active power can be dispatched appropriately in both operating modes based on the capacity or running cost of the Distributed Generators (DGs). The global information (such as the average voltage and output active power of the MG and so on) required by the proposed droop control method to restore the voltage and frequency deviations can be acquired distributedly based on the Multi Agent System (MAS). Simulation studies in PSCAD demonstrate the effectiveness of the proposed control method.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Power Decoupling Control Method of Grid-Forming Converter: Review

  • Hyeong-Seok Lee;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.221-229
    • /
    • 2023
  • Recently, Grid-forming(GFM) converter, which offers features such as virtual inertia, damping, black start capability, and islanded mode operation in power systems, has gained significant attention. However, in low-voltage microgrids(MG), it faces challenges due to the coupling phenomenon between active and reactive power caused by the low line impedance X/R ratio and a non-negligible power angle. This power coupling issue leads to stability and performance degradation, inaccurate power sharing, and control parameter design problems for GFM converters. Therefore, this paper serves as a review study on not only control methods associated with GFM converters but also power decoupling techniques. The aim is to introduce promising control methods and enhance accessibility to future research activities by providing a critical review of power decoupling methods. Consequently, by facilitating easy access for future researchers to the study of power decoupling methods, this work is expected to contribute to the expansion of distributed power generation.

Study of Pool Boiling Heat Transfer on Various Surfaces with Variation of Flow Velocity (다양한 표면에서 유동 속도에 따른 풀 비등 열전달에 관한 연구)

  • Kang, Dong-Gyu;Lee, Yohan;Seo, Hoon;Jung, Dongsoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.343-352
    • /
    • 2013
  • In this study, a smooth flat surface, low fin, Turbo-B, and Thermoexcel-E surfaces are used to examine the effect of the flow velocity on the pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHFs). HTCs and CHFs are measured on a smooth square heater of $9.53{\times}9.53mm^2$ at $60^{\circ}C$ in a pool of pure water at various fluid velocities of 0, 0.1, 0.15, and 0.2 m/s. Test results show that for all surfaces, CHFs obtained with flow are higher than those obtained without flow. CHFs of the low fin surface are higher than those of the Turbo-B and Thermoexcel-E surfaces due largely to the increase in surface area and sufficient fin spaces for the easy removal of bubbles. CHFs of the low fin surface show even 5 times higher CHFs as compared to the plain surface. On the other hand, both Turbo-B and Thermoexcel-E surfaces do not show satisfactory results because their pore sizes are too small and water bubbles easily cover them. At low heat fluxes of less than $50kW/m^2$, HTCs increase as the flow velocity increases for all surfaces. In conclusion, a low fin geometry is good for application to steam generators in nuclear power plants.

Field Loss Analysis and Cooling Analysis of HTS Synchronous Motor (고온초전도 동기모터의 계자손실 해석 및 냉각 해석)

  • Kim, Ki-Chan;Lee, Dae-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.69-74
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

Developing an improved water discharge anchor & trap bolt to prevent basic salt penetration to harbor structures (해수 염기 침투방지를 위한 성능개선 형 물배출 앵커 및 트랩볼트 개발에 관한 연구)

  • Ock, Jong-Ho;Moon, Sang-Deok;Lee, Hwa-Sun;Shin, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.674-682
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

One-Chip Multi-Output SMPS using a Shared Digital Controller and Pseudo Relaxation Oscillating Technique (디지털 컨트롤러 공유 및 Pseudo Relaxation Oscillating 기법을 이용한 원-칩 다중출력 SMPS)

  • Park, Young-Kyun;Lim, Ji-Hoon;Wee, Jae-Kyung;Lee, Yong-Keun;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.148-156
    • /
    • 2013
  • This paper suggests a multi-level and multi-output SMPS based on a shared digital logic controller through independently operating in each dedicated time periods. Although the shared architecture can be devised with small area and high efficiency, it has critical drawbacks that real-time control of each DPWM generators are impossible and its output voltage can be unstable. To solve these problems, a real-time current compensation scheme is proposed as a solution. A current consumption of the core block and entire block with four driver buffers was simulated about 4.9mA and 30mA at 10MHz switching frequency and 100MHz core operating frequency. Output voltage ripple was 11 mV at 3.3V output voltage. Over/undershoot voltage was 10mV/19.6mV at 3.3V output voltage. The noise performance was simulated at 800mA and 100KHz load regulation. Core circuit can be implemented small size in $700{\mu}m{\times}800{\mu}m$ area. For the verification of proposed circuit, the simulations were carried out with Dong-bu Hitek BCD $0.35{\mu}m$ technology.

Consistent Comparison for The Linearity Air Kerma of IEC Standards and Commercial Load in Diagnosing DR Generators (진단용 DR 발생장치에서 IEC 표준규격과 상용부하의 공기커마 직선성에 대한 일관성 비교)

  • Han, Beom-Hui;Kim, Chong-Yeal;Lee, Sang-Ho;Han, Sang-Hyun;You, In-Gyu
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.389-394
    • /
    • 2012
  • In this study, based on IEC 60601-2-54 standard load conditions presented in the limited interval over the air kerma at the absolute linearity closely evaluated by measuring the X-ray results were as follows: 10 units targeted all Diagnostic X-ray generating device (DR) presented in the IEC 60601-2-54 standard linearity of air kerma emerged as inappropriate, the general evaluation of the dose linearity from four in the top 50% and 80 kVp % of the two measurement series were as irrelevant all the rest from six of the top tube voltage of 50% and 80% of the two measurement series, appeared in all suitable. Presented in IEC 60601-2-54 standard dose linearity testing and conventional linearity tests showed many differences. IEC 60601-2-54 standard linearity in the proposed international standards of air kerma is the recommendation of the existing dose linearity considerably more feasible, and to quantify the amount of radiation as the standard suggested by the standard IEC 60601-2-54 air kerma of a diagnostic X-ray imaging device linearity performance management is considered key elements in the critical appraisal.

Application-specific Traffic Generator (응용 프로그램의 특성 반영이 가능한 트래픽 생성기)

  • Yeo, Phil-Koo;Cho, Keol;Yu, Dae-Chul;Hwang, Young-Si;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.9
    • /
    • pp.40-49
    • /
    • 2011
  • Integrating massive components and low-power policies have been actively investigated for system-on-chip designs. But in recent years, finding the optimal interconnection structure among heterogeneous components has emerged as a critical system design issue. Therefore, various simulation tools to model interconnection designs are being developed and performance evaluation of simulation is reflected in the real design. But most of the simulation environments employ traffic generation based on the mathematical probability functions, and such traffic generation cannot fully cover for various situations that may be occurred in the real system. Therefore, the demand for traffic pattern generation based on real applications is increasing. However, there have been few simulators that adopt application-specific traffic generators. This paper proposes a novel traffic generation method in simulating various interconnection structures for multi-processor system-on-chip design. The proposed traffic generation method can generate traffic patterns that can reflect the actual characteristics of the application and evaluate the performance of an interconnection structure under more realistic circumstance than traffic patterns using mathematical probability functions. By comparing the differences between the proposed method and the one based on mathematical probability functions, this paper shows advantages of the proposed traffic generation method.

Development of liquid target for beam-target neutron source & two-channel prototype ITER vacuum ultraviolet spectrometer

  • Ahn, B.N.;Lee, Y.M.;Dang, J.J.;Hwang, Y.S.;Seon, C.R.;Lee, H.G.;Biel, W.;Barnsley, R.;Kim, D.E.;Kim, J.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.421-422
    • /
    • 2011
  • The first part is about development of a liquid target for a neutron source, which is designed to overcome many of the limitations of traditional beam-target neutron generators by utilizing a liquid target neutron source. One of the most critical aspects of the beam-target neutron generator is the target integrity under the beam exposure. A liquid target can be a good solution to overcome damage to the target such as target erosion and depletion of hydrogen isotopes in the active layer, especially for the one operating at high neutron fluxes with no need for water cooling. There is no inherent target lifetime for the liquid target neutron generator when used with continuous refreshment of the target surface exposed to the energetic beam. In this work, liquid target containing hydrogen has been developed and tested in vacuum environment. Potentially, liquid targets could allow a point neutron source whose spatial extension is on the order of 1 to $10{\mu}m$. And the second is about the vacuum ultraviolet (VUV) spectrometer which is designed as a five-channel spectral system for ITER main plasma measurement. To develop and verify the design, a two-channel prototype system was fabricated with No. 3 (14.4 nm~31.8 nm) and No. 4 (29.0 nm~60.0 nm) among the five channels. For test of the prototype system, a hollow cathode lamp is used as a light source. The system is composed of a collimating mirror to collect the light from source to slit, and two holographic diffraction gratings with toroidal geometry to diffract and also to collimate the light from the common slit to detectors. The two gratings are positioned at different optical distances and heights as designed. To study the appropriate detector for ITER VUV system, two different electronic detectors of the back-illuminated charge coupled device and the micro-channel plate electron multiplier were installed and the performance has been investigated and compared in the same experimental conditions. The overall system performance was verified by measuring the spectrums.

  • PDF