• 제목/요약/키워드: Critical electric field

검색결과 174건 처리시간 0.028초

HFC 전송망을 이용한 UPS 원격관리 시스템의 설계와 구현 (Design and Implementation UPS Management System in HFC Network)

  • 김영화;강준우
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(5)
    • /
    • pp.75-78
    • /
    • 2002
  • Since power failures in high-speed communication network, especially in HFC(Hybrid Fiber Coaxial cable) network are critical, microcontroller-based UPS(Uninterrupted Power Supply) are commonly used in the network. Hardware and software of UPS management system is designed and implemented to monitor and control UPS status to supply electric power to ONU and TBA in the HFC network. The result of laboratory tests and field tess of this system shows the scan rate to be 1 to 10 minutes to sufficiently monitor the status of UPS in the network.

  • PDF

PEF 처리에 의한 식품의 가공 (Pulsed Electric Fields: An Emerging Food Processing Technology-An Overview)

  • ;윤여창;이시경
    • Journal of Animal Science and Technology
    • /
    • 제46권5호
    • /
    • pp.871-878
    • /
    • 2004
  • PEF 기법은 안전하고 천연상태에 가까운 식품을 생산하기 위한 최신의 비열처리법이다. 이 기법은 영양가, 풍미, 물성 및 관능적 성질의 영향을 최소화 시키는 안전한 식품생산에 이용할 수 있다. 이 공정은 두 전극사이에 놓여지는 식품에 고압의 전기를(20 $\sim$ 80kv/cm) 작용시킴으로써 실시된다. PEF 처리에 의해 미생물의 세포막이 분해되거나 불한정하게되어 미생물은 활력을 상실하게된다. PEF 공정에 의한 미생물의 비활성화 정도는 주로 전기장에서의 펄스강도와 처리시간에 의존한다. 미생물의 종류에 따라 상응하는 전기장의 강도와 처리시간이 요구된다. 처리효과는 미생물의 특성과 존재했던 배지에서의 생육단계에 의존한다. 효과적인 가공을 위해 여러종류의 공정조건이 적절하게 사용되어야 한다. PEF기법의 잠재적효용은 생물공학에서 식품저장에 이르기까지 다양하다. 식품가공과 관련해서 이 기법은 특히 에너지효율에서 경제적이며 처리되는 식품이 가공공정의 영향을 적게 받는다는 것이 이미 입증되었다. 이 기법을 식품가공에 응용하기위해 본 논문에서 개괄적으로 고찰한다.

Air-Barrier Width Prediction of Interior Permanent Magnet Motor for Electric Vehicle Considering Fatigue Failure by Centrifugal Force

  • Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.952-957
    • /
    • 2015
  • Recently, the interior permanent magnet (IPM) motors for electric vehicle (EV) traction motor are being extensively researched because of its high energy density and high efficiency. The traction motor for EV requires high power and high efficiency at the wide driving region. Therefore, it is essential to fully consider the characteristics of the motor from low speed to high-speed driving regions. Especially, when the motor is driven at high speed, a significant centrifugal force is applied to the rotor. Thus, the rotor must be stably structured and be fully endured at the critical speed. In this paper, aims to examine the characteristics of the IPM motor by adjusting the width of air-barrier according to the permanent magnet position which is critical in designing an IPM motor for EV traction motors and to conduct a centrifugal force analysis for grasping mechanical safety.

Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate

  • Kolahdouzan, Farzad;Arani, Ali Ghorbanpour;Abdollahian, Mohammad
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.273-287
    • /
    • 2018
  • Buckling and free vibration analysis of sandwich micro plate (SMP) integrated with piezoelectric layers embedded in orthotropic Pasternak are investigated in this paper. The refined Zigzag theory (RZT) is taken into consideration to model the SMP. Four different types of functionally graded (FG) distribution through the thickness of the SMP core layer which is reinforced with single-wall carbon nanotubes (SWCNTs) are considered. The modified couple stress theory (MCST) is employed to capture the effects of small scale effects. The sandwich structure is exposed to a two dimensional magnetic field and also, piezoelectric layers are subjected to external applied voltages. In order to obtain governing equation, energy method as well as Hamilton's principle is applied. Based on an analytical solution the critical buckling loads and natural frequency are obtained. The effects of volume fraction of carbon nanotubes (CNTs), different distributions of CNTs, foundation stiffness parameters, magnetic and electric fields, small scale parameter and the thickness of piezoelectric layers on the both critical buckling loads and natural frequency of the SMP are examined. The obtained results demonstrate that the effects of volume fraction of CNTs play an important role in analyzing buckling and free vibration behavior of the SMP. Furthermore, the effects of magnetic and electric fields are remarkable on the mechanical responses of the system and cannot be neglected.

Corrosion Properties of Duplex Stainless Steels - STS329LD and STS329J3L - for the Seawater Systems in Nuclear Power Plant

  • Chang, Hyun-Young;Park, Heung-Bae;Kim, Young-Sik;Ahn, Sang-Kon;Jang, Yoon-Young
    • Corrosion Science and Technology
    • /
    • 제10권2호
    • /
    • pp.60-64
    • /
    • 2011
  • Lean duplex stainless steels have been developed in Korea for the purpose of being used in the seawater systems of industry. There are also many important seawater systems in nuclear power plants. These systems supply seawater to cooling water condenser tubes, heat exchanger tubes, related pipes and chlorine injection systems. The flow velocity of some part of seawater systems in nuclear power plants is high and damages of components from corrosion are severe. The considered lean duplex stainless steels are STS329LD (20.3Cr-2.2Ni-1.4Mo) and STS329J3L (22.4Cr-5.7Ni-3Mo) and PRENs of them are 29.4 and 37.3 respectively. Physical, mechanical and micro-structural properties of them are evaluated, and electrochemical corrosion resistance is measured quantitatively in NaCl solution. Critical Pitting Temperatures (CPT)s are measured on these alloys and pit depths are evaluated using laser microscope. Long period field tests on these alloys are now being performed, and some results are going to be presented in the following study.

Fabrication of field emitters using a filtration-taping-transfer method

  • Song, Ye-Nan;Shin, Dong-Hoon;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.466-466
    • /
    • 2011
  • There have been several methods to fabricate carbon nanotube (CNT) emitters, which include as-grown, spraying, screen-printing, electrophoresis and bonding methods. Unfortunately, these techniques generally suffer from two main problems. One is a weak mechanical adhesion between CNTs and the cathode. The as-grown, spraying and electrophoresis methods show a weak mechanical adhesion between CNTs and the cathodes, which induces CNT emitters pulled out under a high electric field. The other is a severe degradation of the CNT tip due to organic binders used in the fabrication process. The screen-printing method which is widely used to fabricate CNT emitters generally shows a critical degradation of CNT emitters caused by the organic binder. Such kinds of problems induce a short lifetime of the CNT field emitters which may limit their practical applications. Therefore, a robust CNT emitter which has the strong mechanical adhesion and no degradation is still a great challenge. Here, we introduce a simple and effective technique for fabrication of CNT field emitter, namely filtration-taping-transfer method. The CNT emitters fabricated by the filtration-taping-transfer method show the low turn-on electric fields, the high emission current, good uniformity and good stability. The enhanced emission performance of the CNT emitters is mainly attributed to high emission sites on the emitter area, and to good ohmic contact and strong mechanical adhesion between the emitters and cathodes. The CNT emitters using a simple and effective fabrication method can be applied for various field emission applications such as field emission displays, lamps, e-beam sources, and x-ray sources. The detail fabrication process will be covered at the poster.

  • PDF

탄소 나노 튜브가 분산된 수평전기장을 이용한 액정 셀의 액정 방향성과 전기 광학특성 연구 (Orientation of Liquid Crystal and Electro-Optic Characteristic Effect of dispersed Carbon nanotubes in In Plane Switching Cell)

  • 전상연;백인수;이승희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.520-521
    • /
    • 2005
  • To observe the orientation of carbon nanotubes (CNTs) dispersed in nematic liquid crystal (NLC), CNT-doped homogeneously-aligned NLC cells driven by in-plane field was fabricated. The CNTs were aligned with a LC director in the initial state, whereas the CNTs disturbed the LC director above critical ac field. We observed motional textures in the form of vertical stripes in the local area between electrodes, which were associated with a deformation of the LC director orientation. This suggests that CNTs start to vibrate three dimensionally with translational motion. The hysteresis studies of voltage-dependent transmittance under dc electric field show that the amount of residual dc is greatly reduced due to ion trapping by CNT.

  • PDF

Evaluation of 475 ℃ embrittlement in UNS S32750 super duplex stainless steel using four-point electric conductivity measurements

  • Gutierrez-Vargas, Gildardo;Ruiz, Alberto;Lopez-Morelos, Victor H.;Kim, Jin-Yeon;Gonzalez-Sanchez, Jorge;Medina-Flores, Ariosto
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2982-2989
    • /
    • 2021
  • One of the consequences of the 475 ℃ embrittlement of duplex stainless steels is the reduction of the resistance to localized corrosion. Therefore, the detection of this type of embrittlement before the material exhibits significant loss in toughness, and corrosion resistance is important to ensure the structural integrity of critical components under corrosion threats. In this research, conductivity measurements are performed using the alternating current potential drop (ACPD) technique with using a portable four-point probe as a nondestructive evaluation (NDE) method for detecting the embrittlement in a 2507 (UNS S32750) super duplex stainless steel (SDSS) aged at 475 ℃ from as-received condition to 300 h. The electric conductivity results were compared against two electrochemical tests namely double loop electrochemical potentiokinetic reactivation (DL-EPR) and critical pitting temperature (CPT). Mechanical tests and the microstructure characterized using scanning electron microscopy (SEM) imaging are conducted to track the progress of embrittlement. It is shown that the electric conductivity correlates with the changes in impact energy, microhardness, and CPT corrosion tests result demonstrating the feasibility of the four-point probe as a possible field-deployable method for evaluating the 475 ℃ embrittlement of 2507 SDSS.

A Critical Note on the Electric Field in Direct and Alternating Current and Its Consciousness

  • Oh, Hung-Kuk
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 추계학술대회 논문집
    • /
    • pp.98-104
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-14}$ m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays'hindrances, nearthenucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Conventional Concept of Electric Field must be extended in the case of the direct and alternating current. Conventional concept is based on coulomb's force while the electric potential in the direct and alternating current is from Gibb's free energy. And also conventional concept has not any consciousness with human being but the latters has a conscious sensibility. The cell emf is from the kinetic energy of the open $\pi$-rays flow through the conducting wire. The electric potential in alternating current is from that the trans-orbital moving of the induced change of magnetic field in the wire produces flows of open $\pi$-rays, which push the rotating electrons on the orbital and then make the current flow. Human consciousness can induce a resonance with the sensibility of the open $\pi$-rays in the electric measuring equipment. Specially treated acupunctures with Nasucon is for sending an acupunctural effect from one place to another via space by someone's will power.

  • PDF

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • 제64권6권
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.