• Title/Summary/Keyword: Critical Tension

Search Result 395, Processing Time 0.02 seconds

Analysis of surface interaction between filler and binder of PBXs (복합화약 원료들간의 표면특성 해석)

  • 심정섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.207-215
    • /
    • 2001
  • Plastic bonded explosive(PBX) is mainly composed of the nitramine-ploymer compositions. PBX is characterized by high velocity and pressure of detonation, low vulnerability and good thermal stability. Many important applications of PBX require the good adhesion between nitramine crystals and the binder. For PBXs as well as propellants, where good mechanical properties are of great importance, dewetting therefore must be prevented by strong adhesion between filler-binder. Adhesion depends on surface characteristics of filler and binder. In order to design for better adhesion, an understanding of the surface properties of explosive and binder is required. The surface free energies are calculated from contact angle values by the method of Kaelble. Critical surface tension of solids are calculated by Zisman plot. Critical surface tension is a useful parameter for characterizing the wettability of solid surface. In this study, HMX and 3 kinds of copolymers are selected, since they are widely used in many plastic bonded explosives. The technical objective of this investigation is to predict the interaction between filler and binder from their surface free energies.

  • PDF

Instability Analysis of Marangoni Convection for $NH_3-H_2O$ Absorption Process Accompanied by Heat Transfer (열전달을 수반하는 $NH_3-H_2O$ 흡수과정에서의 Marangoni 대류 불안정성 해석)

  • 김제익;최창균;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.126-131
    • /
    • 2003
  • Convective instability driven by surface tension is analyzed in an initially quiescent water absorbing ammonia gas with heat transfer using the linear stability analysis. The propagation theory is adapted to find the critical conditions of the onset of Marangoni convection. In this theory, the solutal penetration depth is chosen as the length scale factor. The results show that the liquid layer becomes more stable with decreasing the Schmidt number and increasing the Lewis number. It is also found that there is a critical Biot number to make the liquid layer be most unstable, and there is a linear relationship between the thor-mal Marangoni number and the solutal Marangoni number.

On Fracture Mechanism of SK-5 Steel by AE Method (AE에 의한 SK-5강의 파괴기구 구명)

  • Kim, Sang-Cheol;Lee, Ok-Seop;Ham, Kyeong-Chun;Oh, Beom-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.130-139
    • /
    • 1990
  • It is well known that mechanisms of fracture and crack growth depend upon material characteristics such as fracture toughness, environmental condition, crack geometry and mechanical properties. It seems to be very important to investighate the effects of the above factors on the behavior of structural components which contain flaws for the detailed evaluation of their integrity. In this experimental research, fracture behaviors of SK-5 high carbon steel was investigated by using Acoustic Emission(AE) technique. Fracturing processes of materials were estimated through both the tension test with nominal specimens and the fracture test with compact tension specimens. The critical applied load which corresponds to the crack initiation and propagation is very improtant for the determination of yield strength of fracture toughness. The critical applied load($P_Q$) was determined through AE method and the source of AE signal was estimated by fractography analysis. The experimental results may contribute to the safety analyses and strength evaluation of structures.

  • PDF

Degradation Behavior of Critical Current in Bi-2223 Superconducting Tape in Bending-Tension Mixed Mode (인장-굽힘모드에서 Bi-2223 초전도 테이프의 임계전류 열화거동)

  • Shin, Hyung-Seop;Kim, Byung-Soo;Choi, Ho-Yeon;Oh, Sang-Soo;Ha, Dong-Woo;Ha, Hong-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.573-576
    • /
    • 2003
  • HTS superconducting tapes are now commercially available for practical applications such as magnets and cables. Since superconductors in such applications are subjected to high mechanical loads that can significantly degrade the superconducting properties, mechanical properties and the strain tolerance known as the strain effect on superconducting properties are needed to be estimated for developing superconducting devices. Influences of loading mode on the Ic degradation and the interaction on strain effect were discussed in this study.

  • PDF

Synthesis of Non-fluorinated Polystearyl methacrylate Water Repellent and Its Properties on Textile Fibers (비불소계 폴리스테아릴메타크릴레이트 발수제의 합성과 발수특성)

  • Kim, Taekyeong;Kang, Hyejin;Park, Jihoon
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.55-61
    • /
    • 2017
  • A non-fluorinated polystearyl methacrylate water repellent was synthesized by emulsion polymerization. The number and weight averaged molecular weights were obtained at around 137,277 and 237,754g/mole. The melting point was observed at $32^{\circ}C$. The contact angle of water droplet on fabrics treated with the water repellent was $140{\sim}145^{\circ}$ for cotton and polyester, and $125{\sim}130^{\circ}$ for wool and nylon. Since the critical surface tension was estimated at 20.7mN/m, even though relatively not so strong as fluorinated water repellent, it is considered to be used as a good water repellent practically.

Effects of damping on the parametric instability behaviour of plates under localized edge loading (compression or tension)

  • Deolasi, P.J.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.229-244
    • /
    • 1995
  • The parametric instability behaviour of a plate subjected to localized in-plane compressive or tensile periodic edge loading is studied, considering the effects of damping into the system. Different edge loading cases have been considered. Damping has been introduced in the form of proportional damping. Dynamic instability behaviour under compressive or tensile periodic edge loading shows that the instability regions are influenced by the load band width and its location on the edge. The effects of damping on the instability regions show that there is a critical value of dynamic load factor beyond which the plate becomes dynamically unstable. The critical dynamic load factor increases as damping increases. Damping generally reduces the widths of the instability regions.

EFFECT OF STRENGTH MISMATCH AND DYNAMIC LOADING ON THE DUCTILE CRACK INITIATION FROM NOTCH ROOT

  • An, Gyn-Baek;Yoshida, Satoshi;Ohata, Mitsuru;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.145-150
    • /
    • 2002
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. It has been demonstrated by authors using round-bar specimens with circumferential notch in single tension that the critical strain to initiate ductile crack from specimen center depends considerably on stress triaxiality, but surface cracking of notch root is in accordance with constant strain condition. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal, elastic-plastic, dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF

The Effect of Oxidation/Reduction of Sulfide Mineral on Its Recovery by Flotation (산화(酸化)/환원(還元) 조건(條件)에 따른 황화광물(黃化鑛物)의 부유선별(浮游選別)에 의한 회수성(回收性) 변화(變化))

  • Kim, Dong-Su
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.12-16
    • /
    • 2007
  • The influence of oxidation on the floatability of sulfide minerals contained in mine failings has been investigated employing chalcopyrite as a target material. The critical surface tension of chalcopyrite was estimated to be about 15.5 dyne/cm based on Zisman plot and the floatability of chalcopyrite was observed to increase with the concentration of collector. The enhanced float-ability of chalcopyrite at its initial stage of oxidation was considered to be due to the transformation of disulfide to elemental sulfur and the decrease in its floatability at further oxidation was presumably caused by the formation of sulfate and/or disulfur trioxide from elemental sulfur. When the oxidized chalcopyrite was reduced, its floatability was increased and the variation of the critical surface tension of chalcopyrite according to tile oxidation/reduction was interpreted by an energy diagram constructed by different bond energies between atoms.

Characteristics of Biosurfactant Producing Pseudomonas sp. G314 (생물 계면활성제를 생산하는 Pseudomonas sp. G314의 특성)

  • Shim, So-Hee;Park, Kyeong-Ryang
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.286-293
    • /
    • 2006
  • Three hundred thirty two bacterial colonies which were able to degrade crude oil were isolated from soil samples that were contaminated with oil in Daejon area. Among them, one bacterial strain was selected for this study based on its low surface tension ability, and this selected bacterial strain was identified as Pseudomonas sp. G314 through physiological-biochemical tests and analysis of its 16S rRNA sequence. Pseudomonas sp. G314 showed a high resistance to antibiotics such as ampicillin, chloramphenicol, spectinomycin, and streptomycin, and heavy metals such as Li, Cr, and Mn. It was found that the optimal pH and temperature for biosurfactant production of Pseudomonas sp. G314 were pH 7.0 and $30^{\circ}C$, respectively. After seven hours of inoculated, the biosurfactant activity reached the maximum, and surface tension of the culture broth was decreased from 72 to 25 dyne/cm. The crude biosurfactant was obtained from the culture broth by acid precipitation, followed by solvent extraction, evaporation and then freeze drying. The CMC (critical micelle concentration) value of the crude biosurfactant was 20 mg/L.

A Study of Static Unstable Behavioral Characteristics of Cable Dome Structures according to the Structural System (구조시스템에 따른 케이블 돔의 정적 불안정거동 특성에 관한 연구)

  • Cho, In-Ki;Kim, Hyung-Seok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.131-138
    • /
    • 2004
  • The cable structure is a kind of ductile structural system using the tension cable and compression column as a main element. From mechanical characteristics of the structural material, it is profitable to be subjected to the axial forces than bending moment or shear forces. And we haweto consider the local buckling when it is subjected to compression forces, but tension member can be used until the failure strength. So we can say that the tension member is the most excellent structural member. Cable dome structures are made up of only the tension cable and compression column considering these mechanical efficiency and a kind of structural system. In this system, the compression members are connected by using tension members, not connected directly each other. Also, this system is lightweight and easy to construct. But, the cable dome structural system has a danger of global buckling as external load increases. That is, as the axisymmetric structure is subjected to the axisymmetric load, the unsymmetric deformation mode is happened at some critical point and the capacity of the structure is rapidly lowered by this reason. This phenomenon Is the bifurcation and we have to reflect this in the design process of the large space structures. In this study, We investigated the nonlinear unstable phenomenon of the Geiger, Zetlin and Flower-type cable dome.

  • PDF