The Effect of Oxidation/Reduction of Sulfide Mineral on Its Recovery by Flotation

산화(酸化)/환원(還元) 조건(條件)에 따른 황화광물(黃化鑛物)의 부유선별(浮游選別)에 의한 회수성(回收性) 변화(變化)

  • Kim, Dong-Su (Department of Environmental Science and Engineering, Ewha Womans University)
  • Published : 2007.04.27

Abstract

The influence of oxidation on the floatability of sulfide minerals contained in mine failings has been investigated employing chalcopyrite as a target material. The critical surface tension of chalcopyrite was estimated to be about 15.5 dyne/cm based on Zisman plot and the floatability of chalcopyrite was observed to increase with the concentration of collector. The enhanced float-ability of chalcopyrite at its initial stage of oxidation was considered to be due to the transformation of disulfide to elemental sulfur and the decrease in its floatability at further oxidation was presumably caused by the formation of sulfate and/or disulfur trioxide from elemental sulfur. When the oxidized chalcopyrite was reduced, its floatability was increased and the variation of the critical surface tension of chalcopyrite according to tile oxidation/reduction was interpreted by an energy diagram constructed by different bond energies between atoms.

Chalcopyrite 를 대상으로 광미 중에 함유된 Sulfide 물질의 부유선별에 의한 분리회수 과정에서 산화가 부유성에 미치는 영향을 고찰하였다. Zisman Plot에 의해 도출된 Chalcopyrite 의 임계계면장력은 약 15.5 dyne/cm인 것으로 파악되었으며 포수제의 농도가 증가함에 따라 그 값은 감소하여 Chalcopyrite의 부유성이 상승하는 것으로 관찰되었다. 초기 산화에 의한 Chalcopyrite의 부유성 상승은 $S_2^{2-}$$S^o$로의 전환에 기인하는 것으로 판단되었으며 형성된 $S^o$$S_4^{2-}$$S_2O_3^{2-}$로 재전환됨에 따라 Chalcopyrite의 부유성은 다시 감소하는 것으로 사료되었다. 산화된 Chalcopyrite의 환원 시 부유성은 상승하는 것으로 나타났으며 산화/환원 과정에서의 임계계면장력의 변화 양상은 원자간 Bond Energy의 변화에 의거한 Energy Diagram으로 해석되었다.

Keywords

References

  1. Sidenko, N. V., Khozhina, E. I. and Sherriff, B. L., 2007: The cycling of Ni, Zn, Cu in the system 'mine tailings ground water-plants': A case study, Applied Geochemistry, 22, pp. 30-52 https://doi.org/10.1016/j.apgeochem.2006.07.019
  2. Routh, J., Bhattacharya, A., Saraswathy, A., Jacks, G. and Bhattacharya, P., 2007: Arsenic remobilization from sediments contaminated with mine tailings near the Adak mine in Vasterbotten district (northern Sweden), Journal of Geochemical Exploration, 92, pp. 43-54 https://doi.org/10.1016/j.gexplo.2006.07.003
  3. Conesa, H. M., Faz, A. and Arnaldos, R., 2007: Initial studies for the phytostabilizationof a mine tailing from the Cartagena-La Union Mining District (SE Spain), Chemosphere, 66, pp. 38-44 https://doi.org/10.1016/j.chemosphere.2006.05.041
  4. Ritcey, G. M., 2005: Tailing management in gold plants, Hydrometallurgy, 78, pp. 3-20 https://doi.org/10.1016/j.hydromet.2005.01.001
  5. Gul, A., Kaytaz, Y. and Onal, G., 2006: Beneficiation of colemanite tailings by attrition and flotation, Minerals Engineering, 19, pp. 368-369 https://doi.org/10.1016/j.mineng.2005.09.046
  6. Markewitz, K., Cabral, A. R., Panarotto, C. T. and Lefebvre, G., 2004: Anaerobic biodegradation of an organic by-products leachate by interaction with different mine tailings, Journal of Hazardous Materials, 110, pp. 93-104 https://doi.org/10.1016/j.jhazmat.2004.02.042
  7. Ohlander, B., Muller, B., Axelsson, M. and Alakangas, L., 2007: An attempt to use LA-ICP-SMS to quantify enrichment of trace elements on pyrite surfaces in oxidizing mine tailings, Journal of Geochemical Exploration, 92, pp. 1-12 https://doi.org/10.1016/j.gexplo.2006.06.001
  8. Karaguzel, C., Gulgonul, I., Demir, C., Cinar, M. and Celik, M. S., 2006: Concentration of K-feldspar from a pegmatitic feldspar ore by flotation, International Journal of Mineral Processing, 81, pp. 122-132 https://doi.org/10.1016/j.minpro.2006.07.008
  9. Onal, G., Bulut, G., Gul, A., Kangal, O., Perek, K. T. and Arslan, F., 2005: Flotation of Aladag oxide lead-zinc ores, Minerals Engineering, 18, pp. 279-282 https://doi.org/10.1016/j.mineng.2004.10.018
  10. Feris, L. A., De Leon, A. T., Santander, M. and Rubio, J., 2004: Advances in the adsorptive particulate flotation process, International Journal of Mineral Processing, 74, pp. 101-106 https://doi.org/10.1016/j.minpro.2003.09.005
  11. Adamson, A. W., 1990: Physical chemistry of surfaces, pp. 398-399, John Wiley & Sons, Inc., New York, U.S.A
  12. Greenwood, N. N. and Earnshaw, A., 1984: Chemistry of the elements, pp. 759-781, Pergamon Press, Oxford, England
  13. Albert, E. and Gilman, A. M., 1929: Inorganic reactions, pp. 253-256, The Electric Publishers, Chicago, U.S.A
  14. http://chemviz.ncsa.uiuc.edu/content/doc-resources-bond.html