• Title/Summary/Keyword: Critical Minimum

Search Result 616, Processing Time 0.026 seconds

Freezing Characteristics of Still Water Under a Subcooling Condition (과냉각상태 정지수의 동결특성에 관한 연구)

  • 박영하;류정인
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.576-582
    • /
    • 1999
  • this paper presents the results of experiments on subsooling degree characteristics which was analyzed in accordance with various test conditions. The test water was cooled below freezing point temperature, was measured. The results showed that using city water as the test water in pyrex tube indicated small standard deviation (SD) compared to using distilled water, and minimum subcooling degree was 6.9$^{\circ}C$ and 6.2$^{\circ}C$, respectively. In addition, a critical subcooling degree in a pyrex tube was larger than that in a stainless steel tube about 0.7$^{\circ}C$ for the same test water. It was also observed that the standard deviation of data for the distilled water showed decreasing tendency aw the increasing with cooling velocity. Then metaldehyde showed a considerable effect on the subcooling degree of distilled water as the ice nucleating substance with increase of test number.

  • PDF

Microstructural Evolution of Electromagnetically Stirred Al alloy Billet During Isothermal Reheating at the Solid-liquid State (전자기 교반한 알루미늄합금 빌렛의 재가열시 고액공존구역에서의 조직변화)

  • Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.129-135
    • /
    • 2008
  • The reheating stage of electromagnetically stirred Al billet is a critical factor in the thixoforming process. When reheated to the solid-liquid state, the microstructure evolves to a more globular and more homogeneous structure by a coarsening mechanism, the kinetics depending on the initial microstructure. Microstructural evolution has been characterized by conventional parameters (mean size of particle and shape factor) as a function of holding time in the solid-liquid state. The aim of this study is to report experimental results concerning microstructural evolution in the solid-liquid state of electromagnetically stirred Al billet. The material was elaborated in the form of continuously cast bars solidified with electromagnetic stirring to degenerate the dendritic structure. The choice of the reheating conditions is determined by a dendritic ripening and coalescence mechanism, involving variations of both the shape and size of the particles. The reheating time has to be long enough to allow a minimum degree of spheroidizing, but has to be limited as much as possible in order to avoid excessive ripening. The optimum microstructure was obtained at the reheating temperature of near $584^{\circ}C$ and the holding time of 5 min. The only means of combining high productivity with good casting quality was to use feedstock billets whose microstructure showed rapid transformation characteristics.

Characteristic properties of TiN thin films prepared by DC magnetron sputtering method for hard coatings (Hard coating 응용을 위한 DC 마그네트론 스퍼터링 방법을 이용하여 증착한 TiN 박막의 특성에 대한 연구)

  • Kim, Young-Ryeol;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.354-354
    • /
    • 2007
  • Titanium nitride (TiN) thin films are widely used for hard coatings due to their superior hardness. In this paper, we wanted see how the films properties are changed according to DC power. TiN thin films were deposited by direct current (DC) magnetron sputtering method using TiN compound target on silicon substrates. The films structural properties are examined by X-ray Diffractions (XRD) and tribological properties are measured by nano-indentation, nano-scratch tester, nano-stress tester. Especially in DC power of 150 W, the maximum hardness and the minimum residual stress of TiN film exhibited about 25 GPa and 1 GPa, respectively. And also, the critical load of TiN film prepared by magnetron sputtering method were measured over 30 N.

  • PDF

What is Outcome-Based Education? (제도적인 관점에서 본 성과중심교육)

  • Kim, Bok Ki;Min, Sang Won;Yoon, Woo Young
    • Korean Medical Education Review
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Outcome-Based education (OBE) is reviewed from the institutional perspective. The demand for and international trends in OBE are briefly examined and several term related to OBE, especially educational objective and program outcomes (POs), are introduced. It is stressed that systems for continuous quality improvement and quality assurance should be established to ensure the maintenance of the OBE system. Because the criteria for accreditation contain a criterion regarding the quality assurance related to program outcomes, several critical issues are considered regarding the POs themselves and the reduction of the POs. The core value of OBE is not only to provide appropriate education services to students to prepare them with the minimum skills and abilities for advancing their professional service, but also to guarantee the quality of graduates. In addition, the educational program should be continuously improved by employing the evaluation results acquired during the operation of the OBE systems. It is certain that an OBE system is one important aspect of student-centered education.

Analytical solutions using a higher order refined theory for the stability analysis of laminated composite and sandwich plates

  • Kant, T.;Swaminathan, K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.337-357
    • /
    • 2000
  • Analytical formulations and solutions for the first time, to the stability analysis of a simply supported composite and sandwich plates based on a higher order refined theory, developed by the first author and already reported in the literature are presented. The theoretical model presented herein incorporates laminate deformations which account for the effects of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of inplane displacements with respect to the thickness coordinate - thus modelling the warping of transverse cross sections more accurately and eliminating the need for shear correction coefficients. The equations of equilibrium are obtained using the Principle of Minimum Potential Energy (PMPE). The comparison of the results using this higher order refined theory with the available elasticity solutions and the results computed independently using the first order and the other higher order theories developed by other investigators and available in the literature shows that this refined theory predicts the critical buckling load more accurately than all other theories considered in this paper. New results for sandwich laminates are also presented which may serve as a benchmark for future investigations.

Wind tunnel study of wind structure at a mountainous bridge location

  • Yan, Lei;Guo, Zhen S.;Zhu, Le D.;Flay, Richard G.J.
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.191-209
    • /
    • 2016
  • Wind tunnel tests of a 1/2200-scale mountainous terrain model have been carried out to investigate local wind characteristics at a bridge location in southeast Tibet, China. Flows at five key locations on the bridge at deck level were measured for 26 directions. It was observed that wind characteristics (including mean wind velocity and overall turbulence intensity) vary significantly depending on the approaching wind direction and measurement position. The wind inclination angle measured in the study fluctuated between $-18^{\circ}$ and $+16^{\circ}$ and the ratio of mean wind velocity to reference wind velocity was small when the wind inclination angles were large, especially for positive wind inclination angles. The design standard wind speed and the minimum critical wind speed for flutter rely on the wind inclination angle and should be determined from the results of such tests. The variation of wind speed with wind inclination angles should be of the asymmetry step type. The turbulence characteristics of the wind were found to be similar to real atmospheric flows.

Service life prediction of a reinforced concrete bridge exposed to chloride induced deterioration

  • Papadakis, Vagelis G.
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.201-213
    • /
    • 2013
  • While recognizing the problem of reinforcement corrosion and premature structural deterioration of reinforced concrete (RC) structures as a combined effect of mechanical and environmental actions (carbonation, ingress of chlorides), emphasis is given on the effect of the latter, as most severe and unpredictable action. In this study, a simulation tool, based on proven predictive models utilizing principles of chemical and material engineering, for the estimation of concrete service life is applied on an existing reinforced concrete bridge (${\O}$resund Link) located in a chloride environment. After a brief introduction to the structure of the models used, emphasis is given on the physicochemical processes in concrete leading to chloride induced corrosion of the embedded reinforcement. By taking under consideration the concrete, structural and environmental properties of the bridge investigated, an accurate prediction of its service life is taking place. It was observed that the proposed, and already used, relationship of service lifetime- cover is almost identical with a mean line between the lines derived from the minimum and maximum critical values considered for corrosion initiation. Thus, an excellent agreement with the project specifications is observed despite the different ways used to approach the problem. Furthermore, different scenarios of concrete cover failure, in the case when a coating is utilized, and extreme deicing salts attack are also investigated.

Surface erosion behavior of biopolymer-treated river sand

  • Kwon, Yeong-Man;Cho, Gye-Chun;Chung, Moon-Kyung;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.49-58
    • /
    • 2021
  • The resistance of soil to the tractive force of flowing water is one of the essential parameters for the stability of the soil when directly exposed to the movement of water such as in rivers and ocean beds. Biopolymers, which are new to sustainable geotechnical engineering practices, are known to enhance the mechanical properties of soil. This study addresses the surface erosion resistance of river-sand treated with several biopolymers that originated from micro-organisms, plants, and dairy products. We used a state-of-the-art erosion function apparatus with P-wave reflection monitoring. Experimental results have shown that biopolymers significantly improve the erosion resistance of soil surfaces. Specifically, the critical shear stress (i.e., the minimum shear stress needed to detach individual soil grains) of biopolymer-treated soils increased by 2 to 500 times. The erodibility coefficient (i.e., the rate of increase in erodibility as the shear stress increases) decreased following biopolymer treatment from 1 × 10-2 to 1 × 10-6 times compared to that of untreated river-sands. The scour prediction calculated using the SRICOS-EFA program has shown that a height of 14 m of an untreated surface is eroded during the ten years flow of the Nakdong River, while biopolymer treatment reduced this height to less than 2.5 m. The result of this study has demonstrated the possibility of cross-linked biopolymers for river-bed stabilization agents.

Analysis of Inter-satellite Ranging Precision for Gravity Recovery in a Satellite Gravimetry Mission

  • Kim, Pureum;Park, Sang-Young;Kang, Dae-Eun;Lee, Youngro
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.243-252
    • /
    • 2018
  • In a satellite gravimetry mission similar to GRACE, the precision of inter-satellite ranging is one of the key factors affecting the quality of gravity field recovery. In this paper, the impact of ranging precision on the accuracy of recovered geopotential coefficients is analyzed. Simulated precise orbit determination (POD) data and inter-satellite range data of formation-flying satellites containing white noise were generated, and geopotential coefficients were recovered from these simulated data sets using the crude acceleration approach. The accuracy of the recovered coefficients was quantitatively compared between data sets encompassing different ranging precisions. From this analysis, a rough prediction of the accuracy of geopotential coefficients could be obtained from the hypothetical mission. For a given POD precision, a ranging measurement precision that matches the POD precision was determined. Since the purpose of adopting inter-satellite ranging in a gravimetry mission is to overcome the imprecision of determining orbits, ranging measurements should be more precise than POD. For that reason, it can be concluded that this critical ranging precision matching the POD precision can serve as the minimum precision requirement for an on-board ranging device. Although the result obtained herein is about a very particular case, this methodology can also be applied in cases where different parameters are used.

Awareness during general anesthesia despite simultaneous bispectral index and end-tidal anesthetic gas concentration monitoring

  • Lee, Jungwon;Park, Chorong;Kim, Saeyoung
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.1
    • /
    • pp.50-53
    • /
    • 2019
  • Awareness during general anesthesia occurs in approximately 0.1-0.2% of cases; nevertheless, particular attention is required because it can lead to critical complications including insomnia, depression, anxiety, and post-traumatic stress disorder. To prevent these complications, bispectral index (BIS) and end-tidal anesthetic gas (ETAG) concentration monitoring are commonly used to examine patient consciousness during surgery. In the present case, an 80-year-old man was scheduled for total gastrectomy. Anesthesia was maintained using desflurane 4.0-5.0% vol, oxygen, and nitrous oxide. The authors simultaneously monitored BIS, which was maintained between 37 and 43, and ETAG, which was maintained between 0.9 and 1.2 minimum alveolar concentration (MAC). After the operation, however, the authors were surprised to learn that the patient complained of awareness during anesthesia. Although BIS and ETAG concentration monitoring are useful in preventing awareness during anesthesia, they cannot be completely trusted. Even though BIS was maintained at approximately 40 and ETAG at 0.7-1.3 MAC, awareness during anesthesia occurred.