Microstructural Evolution of Electromagnetically Stirred Al alloy Billet During Isothermal Reheating at the Solid-liquid State

전자기 교반한 알루미늄합금 빌렛의 재가열시 고액공존구역에서의 조직변화

  • Lee, Dock-Young (Division of Materials, Korea Institute of Science and Technology)
  • 이덕영 (한국과학기술연구원 기능금속연구센터)
  • Published : 2008.05.20

Abstract

The reheating stage of electromagnetically stirred Al billet is a critical factor in the thixoforming process. When reheated to the solid-liquid state, the microstructure evolves to a more globular and more homogeneous structure by a coarsening mechanism, the kinetics depending on the initial microstructure. Microstructural evolution has been characterized by conventional parameters (mean size of particle and shape factor) as a function of holding time in the solid-liquid state. The aim of this study is to report experimental results concerning microstructural evolution in the solid-liquid state of electromagnetically stirred Al billet. The material was elaborated in the form of continuously cast bars solidified with electromagnetic stirring to degenerate the dendritic structure. The choice of the reheating conditions is determined by a dendritic ripening and coalescence mechanism, involving variations of both the shape and size of the particles. The reheating time has to be long enough to allow a minimum degree of spheroidizing, but has to be limited as much as possible in order to avoid excessive ripening. The optimum microstructure was obtained at the reheating temperature of near $584^{\circ}C$ and the holding time of 5 min. The only means of combining high productivity with good casting quality was to use feedstock billets whose microstructure showed rapid transformation characteristics.

Keywords

References

  1. D.B. Spenser, Ph.D. Thesis, MIT, Cambridge, MA, (1971)
  2. D.B. Spenser, R.mehrabian, and M.C.Flemings, Metall. Trans., "Rheological behavior of Sn-15 Pct Pb in the crystallization range", 3 (1972) 1925-1932 https://doi.org/10.1007/BF02642580
  3. S.C. Bergsma, M.C. Toll, M.E. Kassner, X. Li, E. Evangelista, Mater. Sci. Eng., "Semi-solid thermal transformations of AlSi alloys and the resulting mechanical properties", A.237 (1997) 24-34
  4. W.R. Loue, M. Suery, Mater. Sci. Eng., "Microstructural evolution during partial remelting of Al-Si7-Mg alloys", A.203 (1995) 1-13
  5. M. Suery, M.C. Flemings, Metall. Trans., "Effect of strain rate on deformation behavior of semi-solid dendritic alloys", 13A (1982) 1809-1819
  6. Y. H. Chen, Ph. D. Dissertation, The Ohio State University, "Study of solidification, Shrinkage and Natural Convection in Casting Processing", (1990) 15-23
  7. T. Sumitomo, D.H Stjohn, T. Steinberg Mater. Sci. Eng., "The shear behaviour of partially solidified Al-Si-Cu alloys", A289 (2000) 18-29
  8. S.C. Bergsma, X. Li, M.E. Kassner, Mater. Sci. Eng., "Semisolid thermal transformations in Al-Si alloys: II. the optimized tensile and fatigue properties of semi-solid 357 and modified 319 aluminum alloys", A297 (2001) 69-77
  9. P.A. Joly, R. Mehrabian, J. Mater. Sci., "The rheology of a partially solid alloy", (1976) 1393-1401
  10. J.W.K. van Boggelen, D.G. Eskin, L, Katgerman, Scripta Mater., "First stages of grain coarsening in semi-solid AlCu alloys", 49, (2003) 717-722 https://doi.org/10.1016/S1359-6462(03)00358-0
  11. M. Mabuchi, K. Ameyama, H. Iwasaki K. Higashi, Acta Mater., "Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries" 47 (1999) 2047-2057 https://doi.org/10.1016/S1359-6454(99)00094-4
  12. Czerwinski F. Acta Mater., "The oxidation behaviour of an AZ91D magnesium alloy at high temperatures" 50 (2002) 2639-2654 https://doi.org/10.1016/S1359-6454(02)00094-0
  13. D. R. Harbur, M. C. Flemings, J. W. Anderson, W. J. Maraman, Jour. of Nuclear Mater., "Preparation of sound high purity plutonium rods : Part 2. Observed phase transformations during quenching from elevated temperatures" 33 (1969) 195-207 https://doi.org/10.1016/0022-3115(69)90060-9
  14. T.H. Courtney, Scripta Metall., "Fault migration vs. twodimensional ostwald ripening as a mechanism for coarsening of rod eutectics", 9 (1975) 1219-1223 https://doi.org/10.1016/0036-9748(75)90411-1
  15. Metals handbook, 9th ed., vol. 2, American Society for metals (1979) 164-166
  16. D. A. Porter, K. E. Easterling: "Phase Transformations in Metals and Alloys", (1991)
  17. D. Y. Lee, K. B. Kim and D. H. Kim, Mater. Sci. Forum, "Microstructural effects of electromagnetic stirring strength and casting speed in continuous casting of Al alloy" 449 (2004) 321 https://doi.org/10.4028/www.scientific.net/MSF.449-452.321
  18. Dock Young Lee, et al., Rare metals "Effect of the casting speed on microstructure and segregation of electromagnetically stirred Al alloy in continuous casting process" 25 (spec), (2006) 118-123
  19. Dehong Lu, Yehua Jiang, Guisheng Guan, Rongfeng Zhou, Zhenhua Li, Rong Zhou, Jour. of Mater. Process. Tech., "Refinement of primary Si in hypereutectic AlSi alloy by electromagnetic stirring" 189 (2007) 13-18 https://doi.org/10.1016/j.jmatprotec.2006.12.008
  20. S. Sannes, H. Gjestland, L. Arnberg and J. K. Solberg, The 3rd int. Conf. (1994) 75
  21. J. Campbell, International Met. Reviews, vol. 2 (1981), p.71
  22. A. Hellawell, S. Liu and A. Z. Lu: JOM March(1997), p18]
  23. I. M. Lifshitz and V. V. Slyozov, Jour. of Physics and Chem. of Solids, "The kinetics of precipitation from supersaturated solid solutions", 19 (1961) 35-50 https://doi.org/10.1016/0022-3697(61)90054-3
  24. N. Akaiwa, S.C. Hardy, P.W. Voorhees Acta Metall. Mater., "The effects of convection on Ostwald ripening in solid-liquid mixtures", 39 (1991) 2931-2942 https://doi.org/10.1016/0956-7151(91)90109-E
  25. R. N. Hills, P. H. Roberts, International Jour. of Non-Linear Mechanics, "Microstructural coarsening kinetics for a mushy zone of a pure material" 32 (1997) 1003-1013 https://doi.org/10.1016/S0020-7462(96)00142-4