• Title/Summary/Keyword: Critical Minerals

Search Result 85, Processing Time 0.026 seconds

Estimation of Safe Maximum Levels of Vitamins and Minerals to Foods (비타민 무기질 임의영양강화 최대허용수준 추정)

  • Chung, Hae-Rang;Oh, Se-Young
    • Journal of Nutrition and Health
    • /
    • v.39 no.7
    • /
    • pp.692-698
    • /
    • 2006
  • The voluntary addition of vitamins and minerals to the appropriate foods may help reduce the risks associated with low intakes of these micronutrients, yet the potential of excessive intake, particularly for persons consuming very large amount of foods needs to be addressed. Using the Flynn's model to estimate the level of each vitamins and minerals that can be added safely to foods, maximum levels of fortification to conventional foods per 100 kcal portion were estimated. Critical factors in the Flynn's model included tolerable upper intake level (UL), each micronutrient intake at the $95^{th}$ percentile, the proportion of fortified foods in the diets of individuals, the proportion of foods to which micronutrients could be practically added, and a range of estimates for fractions of foods which might be actually fortified in each nutrient. Food vehicles included all foods except for fresh foods and alcoholic beverages, in general. With fortification of 50% of all potentially fortifiable foods, micrornutrients could be added safely to foods at levels per 100 kcal 1) > 100% Recommended Intake (RI) for vitamin $B_12$, 2) 1,200% RI for vitamin $B_1$ and niacin, 3) 1,000% $B_1$ for vitamins $B_2$ and $B_6$, 4) 400% RI for vitamin E, 5) 30% RI for calcium, 6) 20% RI for folic acid, iron and zinc, 7) 10% RI for manganese, 8) no fortification for magnesium, phosphorous and vitamin A, and 8) further consideration of vitamin D, copper and selenium due to insufficient evidence. Results of this study suggests a wide range of vitamins and minerals that can be added safely to foods in current diets of Koreans.

Finite element modeling of corroded RC beams using cohesive surface bonding approach

  • Al-Osta, Mohammed A.;Al-Sakkaf, Hamdi A.;Sharif, Alfarabi M.;Ahmad, Shamsad;Baluch, Mohammad H.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • The modeling of loss of bond between reinforcing bars (rebars) and concrete due to corrosion is useful in studying the behavior and prediction of residual load bearing capacity of corroded reinforced concrete (RC) members. In the present work, first the possibility of using different methods to simulate the rebars-concrete bonding, which is used in three-dimensional (3D) finite element (FE) modeling of corroded RC beams, was explored. The cohesive surface interaction method was found to be most suitable for simulating the bond between rebars and concrete. Secondly, using the cohesive surface interaction approach, the 3D FE modeling of the behavior of non-corroded and corroded RC beams was carried out in an ABAQUS environment. Experimental data, reported in literature, were used to validate the models. Then using the developed models, a parametric study was conducted to examine the effects of some parameters, such as degree and location of the corrosion, on the behavior and residual capacity of the corroded beams. The results obtained from the parametric analysis using the developed model showed that corrosion in top compression rebars has very small effect on the flexural behaviors of beams with small flexural reinforcement ratio that is less than the maximum ratio specified in ACI-318-14 (singly RC beam). In addition, the reduction of steel yield strength in tension reinforcement due to corrosion is the main source of reducing the load bearing capacity of corroded RC beams. The most critical corrosion-induced damage is the complete loss of bond between rebars and the concrete as it causes sudden failure and the beam acts as un-reinforced beam.

Influence of Caecectomy on the Bioavailability of Minerals from Vegetable Protein Supplements in Adult Roosters

  • Vasan, P.;Dutta, Narayan;Mandal, A.B.;Sharma, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.8
    • /
    • pp.1178-1182
    • /
    • 2008
  • The present study was designed to assess the influence of caeca on the availability of calcium, phosphorus, magnesium, manganese and copper from soybean, sunflower, rapeseed, sesame, fish and meat cum bone meal in adult roosters. The excretion of endogenous origin minerals viz., copper, magnesium, manganese and calcium was significantly (p<0.001) higher in caecectomized than in normal roosters. The difference in the endogenous excretion was 50; 60.45; 40.35 and 29.63 per cent for copper, magnesium, manganese and calcium, respectively, in caecectomized roosters. The caeca played a pivotal role in the reabsorption of endogenous origin calcium, magnesium, manganese and copper. The mechanism of phosphorus absorption by the caecal epithelium was negligible. The caecectomized roosters underestimated the bioavailability of copper in sunflower meal and manganese in almost all the test feedstuffs. The present investigation revealed that the caeca played a critical role in the absorption of minerals from vegetable protein feedstuffs which escape digestion and absorption in the small and large intestinal segments.

Study on minerals status of dairy cows and their supplementation through area specific mineral mixture in the state of Jharkhand

  • Bhanderi, B.M.;Goswami, Ajay;Garg, M.R.;Samanta, Saikat
    • Journal of Animal Science and Technology
    • /
    • v.58 no.12
    • /
    • pp.42.1-42.8
    • /
    • 2016
  • Background: Deficiency of macro and micro-minerals in the ration of dairy cows adversely affects growth, milk production and reproduction efficiency. It is essential to examine mineral concentrations in feeds offered to dairy cows in practical farms. Methods: Two villages from each taluka were selected at random for taking representative samples of feeds, forages and hair. Within the village, help was sought from village milk producers and district animal husbandry officer for identification of 4 to 5 farmers and collection of representative samples. All the samples were processed and analyzed for chemical composition as well as major macro and micro-minerals, using Inductively Coupled Plasma-Optical Emission Spectrometer. Results: Ca content in wheat straw (0.29%), crushed maize (0.02%) and wheat bran (0.12%) was found to be below the critical level (0.30%). The P content in concentrate ingredients was high (0.26-0.96%), but low in dry roughages (0.06-0.12%). Cereal straws (0.14%) and grains (0.12%) were deficient in Mg. Feeds and forages were found to be adequate in K (1.50%). Cereals straws were found to be deficient in S (0.11%). Greens were good source of Cu (12.02 ppm). Wheat straw was found to be low in Zn (18 ppm), but high in Mn (225 ppm) and Fe (509 ppm). Local grasses and azolla green were found to be rich source of Co (>1.00 ppm). Se (0.63 ppm) was present in appreciable quantities in most of the feedstuffs. Conclusions: From the present study, it was apparent that the feeds and forages available in the state of Jharkhand may not meet the requirements for Ca, P, Mg, Cu, Zn and Co in order to sustain a milk production of ~10 kg/day. Therefore, it is necessary to supplement these deficient minerals through area specific mineral mixture in the ration of dairy cows for improving productivity and reproduction efficiency.

Variability in Ash, Crude Protein, Detergent Fiber and Mineral Content of Some Minor Plant Species Collected From Pastures Grazed by Goats

  • Serra, A.B.;Serra, S.D.;Orden, E.A.;Cruz, L.C.;Nakamura, K.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.28-34
    • /
    • 1997
  • This study was conducted to determine the protein content, cell wall fractions, and mineral concentrations of some minor plant species collected for one year in pastures grazed by goats in the Philippines. An assessment of nutrient variability and a comparison of forage protein and mineral concentrations to the critical value of protein and minerals based on animal needs were also studied. The plant species were the following: grasses(Axonopus compressus, Eleusine indica, Rottboellia exaltata); legumes (Aeschynomene indica, Calopogonium muconoides, Desmodium tortousum); and herbs (Corchorus olitorius, Ipomea aquatica, Sida acuta, Synedrella nodiflora). The two seasons (dry and wet) were subdivided into Dry-1 (December to February, 132 mm total rainfall), Dry-2 (March to May, 25 mm total rainfall), Wet-1 (June to August, 1,138 mm total rainfall), and Wet-2 (September to November, 1,118 mm total rainfall). Results showed that significant differences were obtained on various nutrient fractions including those mineral concentrations across species. Across season, acid detergent lignin (ADL) had higher (p < 0.05) value at Dry-1. Legumes and herbs were higher in crude protein (CP) especially Sida acuta. Grasses showed the highest neutral detergent fiber (NDF) and acid detergent fiber (ADF) with the addition of Sida nodiflora (herb) for it contained high NDF. Aeschynomene indica contained the highest amount of ADL and the herbs (Ipomea aquatica and Sida acuta) had exceptionally high concentration of minerals. Coefficient variation of the various nutrient values ranged from 27.3 to 136.7%. Some forage minerals appeared to be deficient (sodium, phosphorus and copper) or excess (molybdenum) for the whole or part of the year. This study shows that some minor plant species could extend the range of concentration of some nutrients (i.e., CP and minerals) beyond that normally found in conventional pasture species.

Upstream Risks in Domestic Battery Raw Material Supply Chain and Countermeasures in the Mineral Resource Exploration Sector in Korea (국내 배터리원료광종 공급망 업스트림 리스크와 광물자원탐사부문에서의 대응방안)

  • Oh, Il-Hwan;Heo, Chul-Ho;Kim, Seong-Yong
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.399-406
    • /
    • 2022
  • In line with the megatrend of 2050 carbon neutrality, the amount of critical minerals used in clean-energy technology is expected to increase fourfold and sixfold, respectively, according to the Paris Agreement-based scenario as well as the 2050 carbon-neutrality scenario. And, in the case of Korea, in terms of the battery supply chain used for secondary batteries, the midstream that manufactures battery materials and battery cell packs shows strength, but the upstream that provides and processes raw materials is experiencing difficulties. The Korea Institute of Geoscience and Mineral Resources has established a strategy to secure lithium, nickel, and cobalt and is conducting surveys to respond to the upstream risk of these types of battery raw materials. In the case of lithium, exploration has been carried out in Uljin, Gyeongsangbuk-do since 2020, and by the end of 2021, the survey area was selected for precision exploration by synthesizing all exploration data and building a 3D model. Potential resources will be assessed in 2022. In the case of nickel, the prospective site will be selected by the end of 2022 through a preliminary survey targeting 10 nickel sulfide deposits that have been prospected in the past. In the case of cobalt, Boguk cobalt is known only in South Korea, but there is only a record that cobalt was produced as a minor constituent of hydrothermal deposit. According to the literature, a cobalt ore body was found in the contact area between serpentinite and granite, and a protocol for cobalt exploration in Korea will be established.

A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet

  • Zhou, Xiao;Wang, Pinyi;Al-Dhaifallah, Mujahed;Rawa, Muhyaddin;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.81-99
    • /
    • 2022
  • The aim of current work is to evaluate thermo-electrical characteristics of graphene nanoplatelets Reinforced Composite (GNPRC) coupled with magneto-electro-elastic (MEE) face sheet. In this regard, a cylindrical smart nanocomposite made of GNPRC with an external MEE layer is considered. The bonding between the layers are assumed to be perfect. Because of the layer nature of the structure, the material characteristics of the whole structure is regarded as graded. Both mechanical and thermal boundary conditions are applied to this structure. The main objective of this work is to determine critical temperature and critical voltage as a function of thermal condition, support type, GNP weight fraction, and MEE thickness. The governing equation of the multilayer nanocomposites cylindrical shell is derived. The generalized differential quadrature method (GDQM) is employed to numerically solve the differential equations. This method is integrated with Deep Learning Network (DNN) with ADADELTA optimizer to determine the critical conditions of the current sandwich structure. This the first time that effects of several conditions including surrounding temperature, MEE layer thickness, and pattern of the layers of the GNPRC is investigated on two main parameters critical temperature and critical voltage of the nanostructure. Furthermore, Maxwell equation is derived for modeling of the MEE. The outcome reveals that MEE layer, temperature change, GNP weight function, and GNP distribution patterns GNP weight function have significant influence on the critical temperature and voltage of cylindrical shell made from GNP nanocomposites core with MEE face sheet on outer of the shell.

Nutritional Support for Neurocritically Ill Patients (신경계 중환자의 영양 집중 치료)

  • Jeong, Hae-Bong;Park, Soo-Hyun;Ryu, Ho Geol
    • Journal of Neurocritical Care
    • /
    • v.11 no.2
    • /
    • pp.71-80
    • /
    • 2018
  • Nutritional assessment and support are often overlooked in the critically ill due to other urgent priorities. Unlike oxygenation, organ dysfunction, infection, or consciousness, there is no consensus of indicators. Making it difficult to evaluate the effectiveness of an intervention. Nevertheless, appropriate nutritional support in the critically ill has been associated with less morbidity and lower mortality. But, nutritional support has been considered an adjunct, for body weight maintenance and to help patients during the inflammatory phase of illness. Thus, it has been assigned a lower priority, compared to mechanical ventilation or hemodynamic stability. Recent findings have shown that nutritional support may prevent cellular injury due to oxidative stress and help strengthen the immune response. Large-scale randomized trials and clinical guidelines have shown a shift from nutritional support to nutritional therapy, with an emphasis on the importance of protein, minerals, vitamins, and trace elements. Nutrition is also important in neurocritically ill patients. Since there are few studies or recommendations with regard to the neurocritical population, the general recommendations for nutritional support should be applied.

Settling Mode of the Dredged Soil (준설토의 침강형태에 관한 연구)

  • 윤상묵;장병욱;차경섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.63-73
    • /
    • 2003
  • The settling of the dredged soil may vary with mineral composition, grain size distribution, initial water content and salt concentration of suspension of the site. A series of settling column test was performed to investigate the behaviour of solid suspension material from dredging and reclamation. Settling mode was divided into four types from the observation of interface and settling curves of clay minerals and marine clay samples, and the relationship charts of salt concentration and the initial water content were established to use in the dredging operation with any salt concentration. The critical initial water content which was defined as a threshold of zone settling and the consolidation settling was varied with salt concentration of water and was proportional to the plasticity of soil in sea water.

A STUDY ON NUTRITIONAL STATUS OF TRACE MINERALS OF CATTLE IN JAVA IN INDONESIA

  • Kumagai, H.;Ishida, N.;Katsumata, M.;Yano, H.;Kawashima, R.;Jachja, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.1
    • /
    • pp.15-20
    • /
    • 1990
  • The nutritional status of trace minerals in cattle of Java in Indonesia was investigated by evaluating Cu, Fe, Mo, Zn and Mn concentrations in diets and livers, and Cu and Zn concentrations in blood plasma. Investigations were conducted on Jonggol (West Java), Malang (East Java) and Mojokerto (East Java) in both the rainy and the dry seasons in 1988. In Jonggol, low Cu concentrations in diets showing 7.1 mg/kg in the rainy season and 10.9 mg/kg in the dry season were observed and all plasma samples showed Cu concentrations below the critical level ($0.65{\mu}g/ml$). Thirty percent of the liver samples in Malang and 54% of those in Mojokerto showed lower Cu concentrations than the critical level (75 mg/kg on a dry matter basis). Fe concentrations in diets from the three regions showed a wide variation of values ranging from 249 to 30,000 mg/kg. A large amount of Fe was accumulated in livers from Malang and Mojokerto, giving average concentrations of 498 mg/kg. Zn concentration in diet and plasma samples were close to the borderline and some Zn concentration in these samples showed deficient levels. Mo and Mn concentrations in diets and livers showed normal levels.