• 제목/요약/키워드: Critical Loading

검색결과 766건 처리시간 0.027초

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

Stability of unbraced frames under non-proportional loading

  • Xu, L.;Liu, Y.;Chen, J.
    • Structural Engineering and Mechanics
    • /
    • 제11권1호
    • /
    • pp.1-16
    • /
    • 2001
  • This paper discusses the elastic stability of unbraced frames under non-proportional loading based on the concept of storey-based buckling. Unlike the case of proportional loading, in which the load pattern is predefined, load patterns for non-proportional loading are unknown, and there may be various load patterns that will correspond to different critical buckling loads of the frame. The problem of determining elastic critical loads of unbraced frames under non-proportional loading is expressed as the minimization and maximization problem with subject to stability constraints and is solved by a linear programming method. The minimum and maximum loads represent the lower and upper bounds of critical loads for unbraced frames and provide realistic estimation of stability capacities of the frame under extreme load cases. The proposed approach of evaluating the stability of unbraced frames under non-proportional loading has taken into account the variability of magnitudes and patterns of loads, therefore, it is recommended for the design practice.

2축하중을 받는 직교이방성재료 내 균열의 임계응력 (Critical Stress for a Crack in Orthotropic Material under Biaxial Loading)

  • 임원균;조형석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.37-42
    • /
    • 2003
  • The problem of an orthotropic material with a central crack is studied. The material is subjected to uniform biaxial loading along its boundary. The normal stress ratio theory is applied to predict fracture strength behavior in cracked orthotropic material. The dependence of the critical stress with respect to the biaxial loading and the crack orientation is discussed. Our analysis shows significant effects of biaxial loading on the critical stress. The additional tenn in the asymptotic expansion of the crack tip stress field appears to provide more accurate critical stress prediction.

  • PDF

Critical Compressive Strain of Concrete under a Long-Term Deformation Effect Part I. Experiments

  • Nghia, Tran Tuan;Chu, In-Yeop;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권2호
    • /
    • pp.89-96
    • /
    • 2010
  • This paper focuses on the effect of creep on the critical compressive strain (CCS) of concrete. The strain of concrete corresponding to the peak compressive stress is crucial in the selection of the ultimate yield strength of the reinforcing bar used in reinforced concrete columns. Among the various influencing factors, such as the creep, shrinkage, loading rate and confinement, the effect of creep and shrinkage is the most significant. So far, investigations into how these factors can affect the CCS of concrete have been rare. Therefore, to investigate the effect of creep and shrinkage on CCS, an experimental (part I) and a parametric study (part II) were conducted, as presented in these papers (part I considers creep effect, part II considers effect of creep and shrinkage). In part I, experiments pertaining to the loading age, loading rate, loading duration and loading and creep levels were conducted to study the effect of these variables on the CCS of concrete. It was found that the effects of the loading rate, loading age, and level and duration on the CCS of concrete were negligible. However, it is very important to consider the effect of creep.

Nonlinear numerical simulation of RC columns subjected to cyclic oriented lateral force and axial loading

  • Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.745-765
    • /
    • 2015
  • A nonlinear Finite Element (FE) algorithm is proposed to analyze the Reinforced Concrete (RC) columns subjected to Cyclic Loading (CL), Cyclic Oriented Lateral Force and Axial Loading (COLFAL), Monotonic Loading (ML) or Oriented Pushover Force and Axial Loading (OPFAL) in any direction. In the proposed algorithm, the following parameters are considered: uniaxial behavior of concrete and steel elements, the pseudo-plastic hinge produced in the critical sections, and global behavior of RC columns. In the proposed numerical simulation, the column is discretized into two Macro-Elements (ME) located between the pseudo-plastic hinges at critical sections and the inflection point. The critical sections are discretized into Fixed Rectangular Finite Elements (FRFE) in general cases of CL, COLFAL or ML and are discretized into Variable Oblique Finite Elements (VOFE) in the particular cases of ML or OPFAL. For pushover particular case, a fairly fast converging and properly accurate nonlinear simulation method is proposed to assess the behavior of RC columns. The proposed algorithm has been validated by the results of tests carried out on full-scale RC columns.

EFFECT OF STRENGTH MISMATCH AND DYNAMIC LOADING ON THE DUCTILE CRACK INITIATION FROM NOTCH ROOT

  • An, Gyn-Baek;Yoshida, Satoshi;Ohata, Mitsuru;Toyoda, Masao
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.145-150
    • /
    • 2002
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. It has been demonstrated by authors using round-bar specimens with circumferential notch in single tension that the critical strain to initiate ductile crack from specimen center depends considerably on stress triaxiality, but surface cracking of notch root is in accordance with constant strain condition. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal, elastic-plastic, dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF

Effect of Geometrical Discontinuity on Ductile Fracture Initiation Behavior under Static Leading

  • An, G.B.;Ohata, M.;Toyoda, M.
    • International Journal of Korean Welding Society
    • /
    • 제3권1호
    • /
    • pp.51-56
    • /
    • 2003
  • It is important to evaluate the fracture initiation behaviors of steel structure. It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of notch radius, which can elevate plastic constraint due to heterogeneous plastic straining on critical condition to initiate ductile crack using two-parameters. Hense, the crack initiation testing were conducted under static loading using round bar specimens with circumferential notch. To evaluate the stress/strain state in the specimens was used thermal elastic-plastic FE-analysis. The result showed that equivalent plastic strain to initiate ductile crack expressed as a function of stress triaxiality obtained from the homogeneous specimens with circumferential notched under static loading. And it was evaluated that by using this two-parameters criterion, the critical crack initiation of homogeneous specimens under static loading.

  • PDF

임계정류피로크랙의 하한계 전파조건의 정량적 고찰 (Quantitative Study on Threshold Condition of Critical Non-propagating Crack)

  • 김민건
    • 산업기술연구
    • /
    • 제30권B호
    • /
    • pp.17-23
    • /
    • 2010
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the micro-structure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the "critical non-propagating crack length" It is found that the reduction of the endurance limit of their particular micro-structures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress ${\sigma}_{wo}$ and the critical non-propagating crack length $L_c$ can be written as ${\sigma}_{wo}{^m}{\cdot}L_c=C$ where m,C is constant. Further experiments were carried out on cyclic loading history on the length of critical non-propagating crack. It shown that the length of critical non-propagating crack is closely related to cyclic loading history.

  • PDF

패치 로딩을 받는 알루미늄 합금 A6082-T6 사각형 판의 임계 탄성좌굴하중 검토 (Critical Elastic Buckling Load Investigation of Aluminium Alloy A6082-T6 Square plate Subjected to Patch Loading)

  • 오영철;고재용
    • 해양환경안전학회지
    • /
    • 제20권4호
    • /
    • pp.451-460
    • /
    • 2014
  • 본 연구에서 해양플랜트 구조물에 주로 사용하고 있는 알루미늄 합금 A6082-T6의 재료특성을 반영한 사각형 판에 대한 패치 로딩의 구조 안정성 문제를 검토하였다. 구조 안정성 문제를 검토 시 네 가지 패치 로딩 형태와 종횡비 효과, 주변지지조건을 적용하여 임계 탄성 좌굴하중을 산출하였다. 고유치 좌굴해석 간 사용한 요소는 4절점 쉘요소 shell181을 적용하였다. 패치 로딩을 받는 판은 균일 축 압축하중과 비교 시 상이한 탄성 좌굴거동이 발생되는 것을 관찰할 수 있었으며 하중형태와 위치, 종횡비 효과 등과 같은 변수에 대해 상당히 영향을 받고 있는 것을 확인할 수 있다. 또한, 종횡비(a/b) 1.0, 하중길이(${\gamma}b$) 200 mm 단순지지 사각형 판에서 패치 로딩 형태에 따른 임계 탄성좌굴하중은 67 %(하중 I), 119 %(하중 II), 76 %(하중 III), 160 %(하중 IV)이 각각 산출되었으며 하중 I과 III은 하중 II와 IV보다 훨씬 더 탄성 좌굴거동에 강한 것으로 판단할 수 있다.

Experiment of single screw piles under inclined cyclic pulling loading

  • Dong, Tian Wen;Zheng, Ying Ren
    • Geomechanics and Engineering
    • /
    • 제8권6호
    • /
    • pp.801-810
    • /
    • 2015
  • The ultimate pullout capacity under inclined dynamic loading is an important measure of the destruction degree of vertical screw piles (anchors) under dynamic actions. Based on the static and dynamic tests on two kinds of model screw piles, the ultimate bearing capacity was researched considering different distance-width ratio of blade (D/W) and preloading ratio. The results compared well with other experimental data available in the literature. This research reveals that D/W might determine the failure model of the piles (anchors), for example D/W = 3.14 or 5; a critical dynamic-static loading ratio (DSLR) existed in the experiments. The critical DSLR was reached under the conditions of 40%~60% preloading (D/W = 3.14) or 20%~40% preloading (D/W = 5), respectively.