We study the set of critical exponents of discrete groups acting on regular trees. We prove that for every real number ${\delta}$ between 0 and ${\frac{1}{2}}\;{\log}\;q$, there is a discrete subgroup ${\Gamma}$ acting without inversion on a (q+1)-regular tree whose critical exponent is equal to ${\delta}$. Explicit construction of edge-indexed graphs corresponding to a quotient graph of groups are given.
Three nontrivial nonnegative solutions for some critical quasilinear elliptic systems with lower-order negative perturbations are obtained by using the Ekeland's variational principle and the mountain pass theorem.
Composites of insulating polyethylene and carbon black are widely used in switching elements, conductive paint, and other applications due to the large gap of resistance value. This research addresses the critical exponent of dielectric breakdown strength of polymer matrix composites (PMC) made with carbon black and polyethylene below the percolation threshold (Pt) for the first time. Here, Pt means the volume fraction of carbon black of which the resistance of the PMC is transferred from its sharp decrease to gradual decrease in accordance with the increase of carbon-black-filled content. First, the Pt is determined based on the critical exponents of resistivity and relative permittivity. Although huge cohesive bodies of carbon black are formed in case of being less than the Pt, a percolation path connecting the conducting phases is not formed. The dielectric breakdown strength (Dbs) of the PMC below Pt is measured by using an impulse voltage in the range from 10 kV to 40 kV to avoid the effect of joule heating. Although the observed Dbs data seems to be well fitted to a straight line with a slope of 0.9 on a double logarithm of (Pt-$V_{CB}$) and Dbs, the least squares method gives a slope of 0.97 for the PMC. It has been found that finite carbon-black clusters play an important role in dielectric breakdown.
In this paper, our main purpose is to establish the existence of weak solutions of a weak solutions of a class of p-q-Laplacian system involving concave-convex nonlinearities: $$\{\array{-{\Delta}_pu-{\Delta}_qu={\lambda}V(x)|u|^{r-2}u+\frac{2{\alpha}}{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta},\;x{\in}{\Omega}\\-{\Delta}p^v-{\Delta}q^v={\theta}V(x)|v|^{r-2}v+\frac{2\beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2}v,\;x{\in}{\Omega}\\u=v=0,\;x{\in}{\partial}{\Omega}}$$ where ${\Omega}$ is a bounded domain in $R^N$, ${\lambda}$, ${\theta}$ > 0, and 1 < ${\alpha}$, ${\beta}$, ${\alpha}+{\beta}=p^*=\frac{N_p}{N_{-p}}$ is the critical Sobolev exponent, ${\Delta}_su=div(|{\nabla}u|^{s-2}{\nabla}u)$ is the s-Laplacian of u. when 1 < r < q < p < N, we prove that there exist infinitely many weak solutions. We also obtain some results for the case 1 < q < p < r < $p^*$. The existence results of solutions are obtained by variational methods.
피로균열성장을 유한요소 시뮬레이션하였다. 인장시험으로 얻는 기계적 성질만을 사용하여 피로균열성장거동을 예측하려고 하였다. 유한요소해석 결과 균열선단 부근 절점의 변위의 변화를 살펴 임계균열개구변위를 결정하였다. 균열선단 절점을 분리하여 균열성장을 시뮬레이션하였다. Paris 법칙의 지수를 결정하여 이미 발표된 값과 비교하였다. 균열닫힘을 고려한 유효 응력확대계수에 관하여 그렸을 때 더 일관성이 있는 결과를 얻었다.
Objective: The purpose of this study was to examine the effects of increasing running speed on human stability by comparing the Lyapunov Exponent (LyE) and Coefficient of Variation (CV) methods, with the goal of identifying key variables and uncovering new insights. Method: Fourteen adult males (age: 24.7 ± 6.4 yrs, height: 176.9 ± 4.6 cm, weight: 74.7 ± 10.9 kg) participated in this study. Results: In the CV method, significant differences were observed in ankle (flexion-inversion/eversion; p < .05) and hip joint (internal-external rotation; p < .05) movements, while the center of mass (COM) variable in the coronal axis movements showed a significant difference at the p < .001 level. In the LyE method, statistical differences were observed at the p < .05 level in knee (flexion-extension), hip joint (internal-external rotation) movements, and COM across all three directions (sagittal, coronal, and transverse axis). Conclusion: Our results revealed that the stability of the human body is affected at faster running speeds. The movement of the COM and ankle joint were identified as the most critical factors influencing stability. This suggests that LyE, a nonlinear time series analysis, should be actively introduced to better understand human stabilization strategies.
Consider the problem $-div($\mid$\bigtriangledown_u$\mid$^{p-2}\bigtriangledown_u) = $\mid$u$\mid$^{p^*-2}u + \lambda$\mid$u$\mid$^{q-2}u$ in B, u = 0 on $\partial B$; where $B \subset R^n$ is a ball, $\lambda < 0, 1 < p < n$ and $p^* = \frac{np}{n-p}$ is the critical Sobolev exponent. For given $\lambda > 0$, we show that there exists $k = k(\lambda) \in N$ such that any radial solutions to this problem have at most k noda curves when $p \leq q \leq p^* - 1$.
Sputtering 방법으로 유리기판위에 50-nm Fe 박막을 증착하여 박하우젠 현상을 연구하였다. 실험실 자체 제작 장비인 광자기 현미경을 사용하여 박하우젠 점프가 일어나는 동안 자구 이미지를 촬영함으로써 박하우젠 현상을 실시간으로 직접 관찰하였다. 자구 이미지들을 관찰한 결과 박하우젠 점프가 같은 실험조건에서 측정되었음에도 불구하고 매우 무작위적인 모습을 보이는 것을 확인하였다. 1000번 이상의 측정을 통해 박하우젠 점프크기의 통계분포를 구하였는데, 점프크기의 분포가 거듭제곱법칙 분포를 보임을 확인하였고, 임계지수는 1.14 $\pm$ 0.03의 값을 보임을 확인하였다.
We study existence of positive solutions of the classical nonlinear Schr$\ddot{o}$dinger equation $-{\Delta}u\;+\;V(x)u\;-\;f(x,\;u)\;-\;H(x)u^{2*-1}\;=\;0$, u > 0 in $\mathbb{R}^n$$u\;{\rightarrow}\;0\;as\;|x|\;{\rightarrow}\;{\infty}$. In fact, we consider the following more general quasi-linear Schr$\ddot{o}$odinger equation $-div(|{\nabla}u|^{m-2}{\nabla}u)\;+\;V(x)u^{m-1}$$-f(x,\;u)\;-\;H(x)u^{m^*-1}\;=\;0$, u > 0 in $\mathbb{R}^n$$u\;{\rightarrow}\;0\;as\;|x|\;{\rightarrow}\;{\infty}$, where m $\in$ (1, n) is a positive number and $m^*\;:=\;\frac{mn}{n-m}\;>\;0$, is the corresponding critical Sobolev embedding number in $\mathbb{R}^n$. Under appropriate conditions on the functions V(x), f(x, u) and H(x), existence and non-existence results of positive solutions have been established.
Temperature dependence of the critical micelle concentration (CMC), $x_{CMC}$, in micellization can be described by ln $x_{CMC}$ = A + BT + C lnT + D/T, which has been derived statistical-mechanically. Here A, B, C, and D are fitting parameters. The equation fits the CMC data better than conventionally used polynomial equations of temperature. Moreover, it yields the unique(exponent) value of 2 when the CMC is expressed in a power-law form. This finding is quite significant, because it may point to the universality of the thermal behavior of CMC. Hence, in this article, the nature of the equation ln $x_{CMC}$ = A + BT + C lnT + D/T is examined from a lattice-theory point of view through the Flory-Huggins model. It is found that a linear behavior of heat capacity change of micellization is responsible for the CMC equation of temperature.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.