• Title/Summary/Keyword: Creep-rupture

Search Result 207, Processing Time 0.029 seconds

Compressive Creep Properties of Reinforced Soil Mixture (보강혼합토의 압축 크리프 특성)

  • 이상호;차현주;김철영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.6
    • /
    • pp.115-123
    • /
    • 2002
  • This study was performed to provide basic data for development and construction of reinforced soil wall that mixed with reinforcements such as calcium carbonate, monofilament fiber. In order to determine proper moisture content and mixing ratio by weight of reinforcement, Poisson's ratio and compressive strength tests for sandy soil had been conducted. Model tests for long-term behavior of reinforced soil wall were carried out to investigate the effect of reinforcement during loads and under static loads. The results of creep and model tests for sandy soil compared with clayey soil. Reinforced sandy soil mixed with calcium carbonate and cement showed brittle rupture by shear but that of mixed with monofilament fiber showed ductile rupture due to the tension force of fiber. It was shown that when age increased, creep strain of reinforced soil under sustained load approached constant values.

Characteristics of Liquid Phase Diffusion Bonded Joints Using Newly Developed Ni-3Cr-4Si-3B Insert Metal of Heat Resistant Alloy (신개발 Ni-3Cr-4Si-3B 삽입금속으로 액상확산접합한 내열주강 접합부의 특성)

    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.62-67
    • /
    • 2000
  • Metallurgical characteristics of bonded region and high temperature mechanical properties of heat resistant alloy, Fe-35Ni-26Cr during liquid phase diffusion bonding were investigated employing AM17 insert metal. The insert metal for bonding, AM17 was newly developed Ni-base metal using interpolation method. Bonding of specimens were carried out at 1,403~1,463K for 600s in vacuum. The microconstituents in the bonded interlayer disappeared in the bonding temperature over 1,423K. The microstructures, alloying elements and hardness distribution in the base metal. The tensile strength and elongation of the joints at elevated temperatures were the same level as one of the base metal in the bonding temperature over 1,423K. The creep rupture strength and rupture lives of joints were almost identical to those of base metal.

  • PDF

Creep Life Prediction for Udimet 720 Material Using the Initial Strain Method (ISM)

  • Kong, Yu-Sik;Yoon, Han-Ki;Oh, Sae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.469-476
    • /
    • 2003
  • Despite of considerable research results or uniaxial tension creep available for superalloys, few studies have been made on high temperature creep using the Initial Stram Method (ISM) In this paper, the real-time prediction of high temperature creep strength and creep lift for the nickel-based superalloy Udimet 720 (high-temperature and high-pressure gas turbine engine materials) was performed on round-bar type specimens under pure static load at the temperatures of 538$^{\circ}C$. 649$^{\circ}C$, and 704$^{\circ}C$. The predictive equation derived from the ISM in creep tests showed better reliability than those from LMP (Larson-Miller Parameter) and LMP-lSM (Larson Miller Parameter-Initial Strain Method) specially for long time creep prediction (10$^3$∼10$\^$5/h).

Creep Life Prediction of SUS 316L Stainless Steel (STS 316L 스테인리스강의 크리프 수명예측)

  • Yoon, Jong-Ho;Hwang, Kyung-Choong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.16-22
    • /
    • 2006
  • Stainless steel has widely been used in various industrial fields because it has high corrosion resistance. But, we have little design data about the creep life prediction of SUS316L stainless steel. Therefore, in this study, a series of creep tests and study on them under 16 constant stress and temperature combined conditions have been performed to get the creep design data and life prediction of SUS316L stainless steels and we have gotten the following results. First, the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy gradually decreases as the stresses become bigger. Thirdly, the constant of Larson-Miller parameters on this alloy is estimated about 10. And last, the creep rupture fractographs show the intergranular ductile fracture with many dimples.

Effect of the grain size of temperature dependence on the creep behavior of SUS 316 (SUS 316 강의 온도의존성 결정입경이 크리이프 거동에 미치는 영향)

  • Oh, Sae-Wook;Kang, Oug
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.61-68
    • /
    • 1983
  • Austenitic stainless steel has been investigated widely for creep strength of heat resistant material and effects of grain sizes due to various solution treatment time under constant temperature. It was studied that effects of grain sizes subject to solution treatment temperature 1100.deg. C, 1125.deg. C, 1175.deg. C, 1250.deg C, and 1300.deg. C respectively on the creep strength, fracture behaviour and fractography of SUS 316 stainless steel. The experimental results obtained were as follows. 1. The optimum grain size for the maximum creep strength did not vary with creep testing temperatures and stress levels. 2. Among various grain sizes due to different solution treatment temperature, the optimum grain size for the creep strength was found 0.044mm. Also the size showed the minimum initial strain regardless creep temperature. 3. Garofalo's equation of creep rupture life was applied well to SUS 316 stainless steel. 4. The fractography of optimum size was ductile intergranular fracture of dimple type and showed along with the increase of grain size intergranular fracture of w type.

  • PDF

A Study on the Creep Deformation Characteristic of AZ31 Mg Alloy at High Temperature (AZ3l 마그네슘 합금의 고온 크리이프 변형특성에 관한 연구)

  • An Jungo;Kang Daemi;Koo Yang;Sim Sungbo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.186-192
    • /
    • 2005
  • The apparent activation energy Qc, the applied stress exponent n, and rupture life have been determined from creep test results of AZ31 Mg alloy over the temperature range of 200$^{\circ}C$ to 300$^{\circ}C$ and the stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller with data acquisition computer. At the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy fur the creep deformation was nearly equal to that of the self diffusion of Mg alloy including aluminum From the above results, at the temperature of $200^{\circ}C{\sim}220^{\circ}C$ the creep deformation for AZ31 Mg alloy seemed to be controlled by dislocation climb but controlled by dislocation glide at $280^{\circ}C{\sim}300^{\circ}C$ .And relationship beween rupture time and stress at around the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and again at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, respectively, appeard as fullow; log$\sigma$=-0.18(T+460)(logtr+21)+5.92, log$\sigma$ = -0.25(T+460)(logtr+21)+8.02 Also relationship beween rupture time and steady state creep rate appears as follow; ln$\dot$ =-0.881ntr-2.45

A Study on the Creep Fracture Life of Al 7075 alloy( I ) (Al 7075 합금의 크리이프 파단수명에 관한 연구( I ))

  • 강대민
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.27-40
    • /
    • 1993
  • High temperature tensile tests, steady state creep tests, Internal stress tests and creep rupture tests using A17075 alloy( $T_{6}$ ) were performed over the temperature range of 9$0^{\circ}C$~50$0^{\circ}C$ (0.4 $T_{m}$ ~0.85 $T_{m}$ ) and stress range of 0.64~17.2(kgf/$\textrm{mm}^2$). The main results obtained in this paper were as follows. (1) The activation energies for yielding at the temperature of 0.4 $T_{m}$ ~0.75 $T_{m}$ were calculated to be 25.7~36.5kcal/mol, which were nearly equal to the activation energies for creep. (2) At around the temperature of 9$0^{\circ}C$~12$0^{\circ}C$ and under the stress level of 10~17.2(kgf/$\textrm{mm}^2$), and at around the temperature of 200~41$0^{\circ}C$ and under the stress level of 1.53~9.55(kgf/$\textrm{mm}^2$) and again at around the temperature of 470~50$0^{\circ}C$ and under the stress level of 0.62~l.02(kgf/$\textrm{mm}^2$), the applied stress dependence of steady state creep rate $n_{measu}$ measured were, respectively, 3.15, 6.62 and 1.1, which were in good agreement the calculated stress dependence $n_{ealeu}$ obtained by the difference of the applied stress dependence of the Internal stress and the ratio of the internal stress to the applied stress. (3) At the temperature range of 0.4~0.43 $T_{m}$ , and at the temperature range of 0.52~0.75 $T_{m}$ and again at the temperature range of 0.82~0.85 $T_{m}$ , the activation energies $Q_{measu}$ obtained by steady state creep rate, respective, 26. 16, 34.9, 36.2 and 36.1kcal/mol, which were in good agreement with those obtained with the activation energies under constant effective stress and the temperature dependence of Internal stress. (4) At the temperature range of the 0.52~0.73 $T_{m}$ and under the stress level of 1.53~9.55(kgf/$\textrm{mm}^2$), the stress dependence of rupture life(n’) measured was 6.3~6.6, which was in good agreement with the stress dependence of steady state creep rate(n). And at the same condition the activation energy for rupture( $Q_{f}$ ) measured was 32.0~36.9kca1/mol, which was also in good agreement with the activation energy obtained by steady state creep rate ( $Q_{c}$ ). (5) The rupture life( $t_{f}$ ) might be represented by athermal process attributed to the difference of the applied stress dependence of the internal stress and the ratio of the internal stress to the applied stress, and the thermal activated process attributied to the temperature dependence of the internal stress as $t_{f}$ = A'$\sigma$$_{a}$ {n(1-d $\sigma$$_{i}$ /d $\sigma$$_{a}$ )/(1-$\sigma$$_{i}$ / $\sigma$$_{a}$ )}.exp[{ $Q_{c}$ $^{*}$-( $n_{o}$ R $T^2$/ $E_{(T)}$) (d $E_{(T)}$/dT) - ( $n_{0}$ R $T^2$/ $\sigma$$_{a}$ - $\sigma$$_{i}$ ) (d $\sigma$$_{i}$ /dT)}/RT]. (6) The relationship betwween Larson-Miller rupture parameter and logarithmic stress was linearly decreased, so creep rupture life of Al 7075 alloy seemed to be predicted exactly with Larson-Miller parameter.meter.

  • PDF

Creep strain modeling for alloy 690 SG tube material based on modified theta projection method

  • Moon, Seongin;Kim, Jong-Min;Kwon, Joon-Yeop;Lee, Bong-Sang;Choi, Kwon-Jae;Kim, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1570-1578
    • /
    • 2022
  • During a severe accident, steam generator (SG) tubes undergo rapid changes in the pressure and temperature. Therefore, an appropriate creep model to predict a short term creep damage is essential. In this paper, a novel creep model for Alloy 690 SG tube material was proposed. It is based on the theta (θ) projection method that can represent all three stages of the creep process. The original θ projection method poses a limitation owing to its inability to represent experimental creep curves for SG tube materials for a large strain rate in the tertiary creep region. Therefore, a new modified θ projection method is proposed; subsequently, a master curve for Alloy 690 SG material is also proposed to optimize the creep model parameters, θi (i = 1-5). To adapt the implicit creep scheme to the finite element code, a partial derivative of incremental creep with respect to the stress is necessary. Accordingly, creep model parameters with a strictly linear relationship with the stress and temperature were proposed. The effectiveness of the model was validated using a commercial finite element analysis software. The creep model can be applied to evaluate the creep rupture behavior of SG tubes in nuclear power plants.

Suggestion and Evaluation of a Multi-Regression Linear Model for Creep Life Prediction of Alloy 617 (Alloy 617의 장시간 크리프 수명 예측을 위한 다중회귀 선형 모델의 제안 및 평가)

  • Yin, Song-Nan;Kim, Woo-Gon;Jung, Ik-Hee;Kim, Yong-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • Creep life prediction has been commonly used by a time-temperature parameter (TTP) which is correlated to an applied stress and temperature, such as Larson-Miller (LM), Orr-Sherby-Dorn (OSD), Manson-Haferd (MH) and Manson-Succop (MS) parameters. A stress-temperature linear model (STLM) based on Arrhenius, Dorn and Monkman-Grant equations was newly proposed through a mathematical procedure. For this model, the logarithm time to rupture was linearly dependent on both an applied stress and temperature. The model parameters were properly determined by using a technique of maximum likelihood estimation of a statistical method, and this model was applied to the creep data of Alloy 617. From the results, it is found that the STLM results showed better agreement than the Eno’s model and the LM parameter ones. Especially, the STLM revealed a good estimation in predicting the long-term creep life of Alloy 617.