• 제목/요약/키워드: Creep property

검색결과 100건 처리시간 0.019초

Modelling creep behavior of soft clay by incorporating updated volumetric and deviatoric strain-time equations

  • Chen Ge;Zhu Jungao;Li Jian;Wu Gang;Guo Wanli
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.55-65
    • /
    • 2023
  • Soft clay is widely spread in nature and encountered in geotechnical engineering applications. The creep property of soft clay greatly affects the long-term performance of its upper structures. Therefore, it is vital to establish a reasonable and practical creep constitutive model. In the study, two updated hyperbolic equations based on the volumetric creep and deviatoric creep are respectively proposed. Subsequently, three creep constitutive models based on different creep behavior, i.e., V-model (use volumetric creep equation), D-model (use deviatoric creep equation) and VD-model (use both volumetric and deviatoric creep equations) are developed and compared. From the aspect of prediction accuracy, both V-model and D-model show good agreements with experimental results, while the predictions of the VD-model are smaller than the experimental results. In terms of the parametric sensitivity, D-model and VD-model are lower sensitive to parameter M (the slope of the critical state line) than V-model. Therefore, the D-model which is developed by incorporating the updated deviatoric creep equation is suggested in engineering applications.

Influence of creep on dynamic behavior of concrete filled steel tube arch bridges

  • Ma, Yishuo;Wang, Yuanfeng;Su, Li;Mei, Shengqi
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.109-122
    • /
    • 2016
  • Concrete creep, while significantly changing the static behaviors of concrete filled steel tube (CFST) structures, do alter the structures' dynamic behaviors as well, which is studied quite limitedly. The attempt to investigate the influence of concrete creep on the dynamic property and response of CFST arch bridges was made in this paper. The mechanism through which creep exerts its influence was analyzed first; then a predicative formula was proposed for the concrete elastic modulus after creep based on available test data; finally a numerical analysis for the effect of creep on the dynamic behaviors of a long-span half-through CFST arch bridge was conducted. It is demonstrated that the presence of concrete creep increases the elastic modulus of concrete, and further magnifies the seismic responses of the displacement and internal force in some sections of the bridge. This influence is related closely to the excitation and the structure, and should be analyzed case-by-case.

크리프 균열 진전 거동의 유한 요소 해석 (Finite Element Analysis of Creep Crack Growth Behavior)

  • 최현창
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.490-497
    • /
    • 1998
  • An elast-biscoplastic finite element analysis is performed to investigate detailed growth behavior of creep cracks and the numerical results are compared with experimental results. The results of mesh translation method are compared with those of node release method. Load line displancement curve obtained from the crack growth analysis by mesh translation shows the improved results than that obtained from the crack growth by node release method when the secondary creep rate is only used as creep material property. The results of accounting for primary creep rate and instantaneous plasticity shows a good agreement with the experimental result.

  • PDF

감소인자에 의한 토목합성보강재의 장기안정성 평가 (Assessment of Long-Term Stability of Geosynthetic Reinforcement Materials by Reduction Factors)

  • 전한용;목문성;조성호;차동환;김성철;안주환
    • 한국지반신소재학회논문집
    • /
    • 제4권3호
    • /
    • pp.11-19
    • /
    • 2005
  • 2가지 형태의 지오그리드의 장기안정성을 평가하였다. 멤브레인 연신형 지오그리드는 지수함수 형 인장특성을 나타내었으며 섬유형 지오그리드는 파단점에 근접할수록 빠른 인장특성의 증가를 나타내었다. 단기 가속 크리프 시험은 섬유형 지오그리드에는 실시되었지만 멤브레인 연신형 지오그리드의 경우 열적특성 때문에 실온에서만 실시 하였다. 멤브레인 연신형 지오그리드의 크리프 변형률은 인장시험에 의한 극한 인장변형률보다 크게 나타났다. 섬유형 지오그리드의 크리프 변형에 의한 감소인자는 멤브레인 연신형 지오그리드보다 작게 나타났다. 이 결과로부터 섬유형 지오그리드가 멤브레인 연신형 지오그리드보다 크리프 변형에 안정성이 있음을 알 수 있었다.

  • PDF

1차 크리프 속도를 고려한 크리프 균열 진전의 유한요소 해석 (Finite Element Analysis of Creep Crack Growth Behavior Including Primary Creep Rate)

  • 최현창
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1120-1128
    • /
    • 1999
  • An elastic-viscoplastic finite element analysis is performed to investigate detailed growth behavior of creep cracks and the numerical results are compared with experimental results. In Cr-Mo steel stress fields obtained from the crack growth method by mesh translation were compared with both cases that the secondary creep rate is only used as creep material property and the primary creep rate is included. Analytical stress fields, Riedel-Rice(RR) field, Hart-Hui-Riedel(HR) field and Prime(named in here) field, and the results obtained by numerical method were evaluated in details. Time vs. stress at crack tip was showed and crack tip stress fields were plotted. These results were compared with analytical stress fields. There is no difference of stress distribution at remote region between the case of 1st creep rate+2nd creep rate and the case of 2nd creep rate only. In case of slow velocity of crack growth, the effect of 1st creep rate is larger than the one of fast crack growth rate. Stress fields at crack tip region we, in order, Prime field, HR field and RR field from crack tip.

Modeling time-dependent behavior of hard sandstone using the DEM method

  • Guo, Wen-Bin;Hu, Bo;Cheng, Jian-Long;Wang, Bei-Fang
    • Geomechanics and Engineering
    • /
    • 제20권6호
    • /
    • pp.517-525
    • /
    • 2020
  • The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.

전분, 식염 및 알카리 첨가제가 냉면의 기계적 성질에 미치는 영향 (Effects of the Addition of Starch, Salt and Soda Ash on the Mechanical Property of Naengmyon)

  • 권오훈;이철호
    • 한국식품과학회지
    • /
    • 제16권2호
    • /
    • pp.175-178
    • /
    • 1984
  • 냉면 국수를 제조함에 있어 전분과 밀가루의 혼합비와 식염 및 알카리 첨가제의 첨가량에 따른 국수발의 기계적 성질의 변화를 creep test로 측정하였다. Creep test의 초기 변형율을 정확히 측정하기 위하여 VTR시스템으로 사진을 찍어 분석하였다. 국수발의 creep 커브는 Burgers의 4-element모델로 분석될 수 있었다. 반죽에 전분의 비율의 높아질수록 삶은 국수발의 순간 탄성치와 뉴우턴 점성치는 감소 하였다. 90% 전분을 포함한 반죽에 식염을 가할 경우 식염농도 4 % 수준까지는 순간탄성이 감소하였다. 알카리 첨가제 첨가시 국수발의 순간탄성, 지연탄성, 지연시간 및 뉴우턴 점성치들이 불규칙하게 변하였으며 그 효과를 일관성 있게 나타낼 수 없었다.

  • PDF

PSC 박스거더 교량에 사용된 세그먼트 콘크리트의 크리프 및 건조수축에 관한 실험적 연구 (An Experimental Study on the Creep and Shrinkage for the Segment Concrete in PSC Box Girder Bridge)

  • 최한태;윤영수;이만섭
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.23-34
    • /
    • 1999
  • In designing PSC box girder bridge, the dead load, prestressing force, creep and shrinkage of concrete are the main factors which influence the camber and deflection of segmental concrete structure under construction. Among these factors the creep and shrinkage are the functions of the time-dependent property which, therefore, must considered with time. The prediction model for estimating creep and shrinkage of concrete has been suggested by ACI, CEB/FIP, JSCE and KSCE design code. In this study the creep and shrinkage test were carried out for four curing ages of concrete which was applied to the pretressed concrete box-girder bridge at a construction site, and the results of test were compared to the values of prediction by the design code. Shrinkage test shows that the test results are similar to KSCE-96 and JSCE-96 but very higher than other prediction model and creep test results are generally similar to ACI-209 and DSCE-96 but lower than other prediction models in contrast to shrinkage test.

Time-dependent Material Properties in FCM Segment of Prestressed Concrete Box-Girder Bridge

  • Yoon, Young-Soo;Choi, Han-Tae;Kwon, Soon-Beom
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.99-107
    • /
    • 1999
  • In designing the Prestressed concrete box-girder bridge. dead load, prestressing force, creep and shrinkage of concrete are the main factors which influence the camber and deflection of segmental concrete structure under construction. Among these factors the creep and shrinkage are the functions of the time-dependent property which. therefore, must be considered with time. The prediction model for estimating creep and shrinkage of concrete has been suggested by ACI, CEB/FIP, JSCE and KSCE design code and EMM, AEMM, RCM, IDM and SSM has been suggested for analytical method in consideration of time-dependent characteristics. In this study the creep test was carried out for four different curing ages of concrete which were applied to the Prestressed concrete structure at the construction site, and the results of test were compared with the values of creep prediction proposed by the design code. Also the creep test was performed with step-wise incremental stresses and the results were compared to the analytical values.

  • PDF

소형펀치-크리프 시험에 의한 9Cr1MoVNb강의 고온 크리프 특성 평가 연구 (A Study on Evaluation of High Temperature Creep Properties of 9Cr1MoVNb Steel by Small Punch-Creep test)

  • 유효선;나성훈;백승세;권일현;안병국;나의균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.99-104
    • /
    • 2000
  • This paper describes the high temperature creep characteristics for virgin material of 9Cr1MoVNb steel using small punch creep(SP-Creep) test technique which is developing recently. In addition, the several results of SP-Creep test are compared with that of 2.25Cr- 1Mo steel which is widely used as boiler materials and that of conventional uniaxial creep test. The obtained SP-Creep curves show the creep behaviors of three regimes like that obtained from conventional uniaxial creep test, and SP-Creep properties are definitely depended on applied load and test temperature. The correlation of SP-Creep rate and creep rupture life with applied load has been determined like the correlation between creep rate/rupture life and stress in uniaxial creep test, and also is satisfied with Power law. The creep rupture times of newly 9Cr1MoVNb steel are higher than those of 2.25Cr1Mo steel at the same creep temperature and applied loading condition, and the decrease extent of creep rupture life with loads is very lower compared with 2.25Cr1Mo steel.

  • PDF