• 제목/요약/키워드: Creep characteristics

검색결과 298건 처리시간 0.026초

화강풍화토의 creep 변형특성 (Creep Deformation Characteristics of Weathered Granite Soil)

  • 박흥규;김용하;팽우선;이해수
    • 한국지반공학회논문집
    • /
    • 제23권12호
    • /
    • pp.43-52
    • /
    • 2007
  • 본 연구는 도로 성토재인 화강 풍화토의 creep 변형 거동특성 분석을 하였다. 일축압축 상태에서의 creep 변형률은 버저스 물체의 이론적 해석치와 비교적 잘 일치하였다. 탄성변형은 작용하중이 클수록 오랜 시간 경과 후 종료되었다. 1차 creep 변형률은 0.0028이며 이는 하중 재하 후 $3{\sim}5$일 이내에 완료되는 것으로 분석되었으며 성토체의 1차 creep 변형 완료 시간은 성토고에 비례하여 증가 되는 것으로 판단되었다. 2차 creep 변형률은 1차 creep 변형률의 약 50%정도로 나타났다.

마찰용접된 니켈기 초내열합금 Alloy718의 고온 크리프 파단 특성 (High Temperature Creep Rupture Characteristics of Ni-Based Alloy718 Jointed by Friction Welding)

  • 권상우;공유식;김선진
    • 한국해양공학회지
    • /
    • 제22권6호
    • /
    • pp.58-63
    • /
    • 2008
  • The short-term high temperature creep rupture behavior of Ni-based Alloy718 steels jointed by friction welding wasinvestigated at the elevated temperatures of 550 to $700^{\circ}C$ under constant stress conditions. The creep rupture characteristics such as creep stress, rupture time, steady state creep rate, and initial strain were evaluated. Creep stress has a quantitative correlation between creep rupture time and steady state creep rate. The stress exponents (n, m) of the experimental data at 550, 600, 650 and $700^{\circ}C$ were derived as 26.1, -22.4, 22.5, -18.5, 17.4, -14.3 and 6.9, -8.1, respectively. The stress exponents decreased with increasing creep temperature. The creep life prediction was derived by the Larson-Miller parameter (LMP) method and the result equation obtained is as follows: T(logtr+20)=-0.00148${\sigma}^2$-3.089${\sigma}$+23232. Finally, the results were compared with those of the base metal for Alloy718.

암(岩)과 콘크리트의 Creep 특성에 대한 비교평가 (Creep Characteristics of Rocks and Concrete - A Comparison)

  • 김학문
    • 한국터널지하공간학회 논문집
    • /
    • 제3권2호
    • /
    • pp.33-56
    • /
    • 2001
  • 모든 암석들이 취성이나 시간변형거동인 Creep 특성을 나타낸다는 것은 잘 알려진 사실이다. 암석들에 대한 시간변형거동의 이해는 토목이나 터널기술분야에 필수적인 요건이 된다. 그러므로 다양한 하중조건과 물리적 환경상태에서 암석과 콘크리트에 대한 Creep특성을 조사하였다. 두가지 다른 Creep변형예측공식을 사용하여 그 결과를 비교함으로서 이들 재료들의 유사점을 찾아보았다. Creep 변형 예측공식을 사용하여 3축압축 상태에서 얻어진 실험결과들과 비교 평가하였다.

  • PDF

고온용 복합재료의 크립 거동에 있어서 구성요소의 영향에 대한 연구 (A Study on the Influence of its Constituents on the Creep Behavior of High Temperature Composite Materials)

  • 박용환
    • 한국안전학회지
    • /
    • 제13권2호
    • /
    • pp.45-53
    • /
    • 1998
  • A method to predict the creep behavior of fiber-reinforced ceramic composites at high temperatures was suggested based on finite element modeling using constituent creep equations of fiber and matrix and showed good agreement with the experimental results. The effects of matrix creep behavior, fiber volume fraction, and residual stresses on the composite creep behavior were also investigated. The results showed that the primary behavior of composites was greatly affected by that of matrix but post-primary behavior was governed by fiber creep characteristics. The increase of fiber volume fraction from 15 vol% to 30 vol% caused the 50% and 40% decrease of steady-state creep rates and total creep strains at $1200^{\circ}C$, 180MPa, respectively. Feasible compressive residual stresses in the matrix caused by different thermal expansion coefficients between the fiber and the matrix could significantly reduce total creep strains of the composite. The creep deformation mechanism in the fiber-reinforced ceramic composites could be explained by the stress transfer and redistribution in the fiber and matrix due to different creep characteristics of its constituents.

  • PDF

내열강 용접부의 크리프 평가 신기술 개발에 관한 연구 (A Study of New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment(I))

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • 제20권6호
    • /
    • pp.30-30
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen(l0×10×0.5mm). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at 600℃. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.

내열강 용접부의 크리프 평가 신기술 개발에 관한 연구(I) (A Study on New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment (I))

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • 제20권6호
    • /
    • pp.754-761
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen($10{\times}10{\times}0.5mm$). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at $600^{\circ}C$. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.

Creep characteristics and instability analysis of concrete specimens with horizontal holes

  • Xin, Yajun;Hao, Haichun;Lv, Xin;Ji, Hongying
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.563-572
    • /
    • 2018
  • Uniaxial compressive strength test and uniaxial compression creep one were produced on four groups of twelve concrete specimens with different hole number by RLW-2000 rock triaxial rheology test system. The relationships between horizontal holes and instantaneous failure stress, the strain, and creep failure stress, the strain, and the relationships between stress level and instantaneous strain, creep strain were studied, and the relationship between horizontal holes and failure mode was determined. The results showed that: with horizontal hole number increasing, compressive strength of the specimens decreased whereas its peak strain increased, while both creep failure strength and its peak strain decreased. The relationships between horizontal holes and compressive strength of the specimens, the peak strain, were represented in quadratic polynomial, the relationships between horizontal holes and creep failure strength, the peak strain were represented in both linear and quadratic polynomial, respectively. Instantaneous strain decreased with stress level increasing, and the more holes in the blocks the less the damping of instantaneous strain were recorded. In the failure stress level, instantaneous strain reversally increased, creep strain showed three stages: decreasing, increasing, and sharp increasing; in same stress level, the less holes the less creep strain rate was recorded. The compressive-shear failure was produced along specimen diagonal line where the master surface of creep failure occurred, the more holes in a block, the higher chances of specimen failure and the more obvious master surface were.

Time-dependent compressibility characteristics of Montmorillonite Clay using EVPS Model

  • Singh, Moirangthem Johnson;Feng, Wei-Qiang;Xu, Dong-Sheng;Borana, Lalit
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.171-180
    • /
    • 2022
  • Time-dependent stress-strain behaviour significantly influences the compressibility characteristics of the clayey soil. In this paper, a series of oedometer tests were conducted in two loading patterns and investigated the time-dependent compressibility characteristics of Indian Montmorillonite Clay, also known as black cotton soil (BC) soil, during loading-unloading stages. The experimental data are analyzed using a new non-linear function of the Elasto-Visco-Plastic Model considering Swelling behaviour (EVPS model). From the experimental result, it is found that BC soil exhibits significant time-dependent behaviour during creep compared to the swelling stage. Pore water entrance restriction due to consolidated overburden pressure and decrease in cation hydrations are responsible factors. Apart from it, particle sliding is also evident during creep. The time-dependent parameters like strain limit, creep coefficient and Cαe/Cc are observed to be significant during the loading stage than the swelling stage. The relationship between creep coefficients and applied stresses is found to be nonlinear. The creep coefficient increases significantly up to 630 kPa-760 kPa (during reloading), and beyond it, the creep coefficient decreases continuously. Several parameters like loading duration, the magnitude of applied stress, loading history, and loading path have also influenced secondary compressibility characteristics. The time-dependent compressibility characteristics of BC soil are presented and discussed in detail.

실트질 모래의 비배수 크리프특성 및 크리프 모델 비교연구 (Undrained Creep Characteristics of Silty Sands and Comparative Study of Creep model)

  • 봉태호;손영환;노수각;박재성
    • 한국농공학회논문집
    • /
    • 제54권1호
    • /
    • pp.19-26
    • /
    • 2012
  • Soils exhibit creep behavior in which deformation and movement proceed under a state of constant stress or load. In this study, A series of triaxial tests were performed under constant principal stress in order to interpret the undrained creep characteristics of silty sands. Although samples are non-plastic silty sands, the results of tests show that the creep deformation increasing over time. Based on the results of test, Singh-Mitchell model parameters and Generalized model coefficients were calculated. Generalized model showed slightly larger deformation in the primary creep range but secondary creep deformation was almost identical. Although Singh-Mitchell model showed relatively large errors compared to Generalized model because it uses the average of test results, but Singh-Mitchell model can be easily represented by three creep parameters.

재하시 재령과 습도의 영향을 고려한 콘크리트의 합리적인 인장크리프 모델 (Tensile Creep Model of Concrete Incorporation the Effects of Humidity and Time at Loading)

  • 이형준;오병환
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.3-11
    • /
    • 1999
  • The creep characteristics of concrete under tensile stress has been usually assumed to have the same characteristics as that under compressive stress in the time-dependent analysis of concrete structures. However, it appears from the recent experimental studies that tensile creep behavior is much different from compressive one. In particular, high sustaining tensile stress may cause time-dependent cracking and thus lead to tensile failure. It is, therefore, necessary to model the tensile creep behavior accurately for realistic time-dependent analysis of concrete structures. The present paper to have been focused to suggested more realistic model for the tensile creep behavior of concrete. The models are compared with tensile creep test data available in the literature. The proposed model may allow more refined analysis of concrete structures under time-dependent loading.