• Title/Summary/Keyword: Creep behavior

Search Result 593, Processing Time 0.031 seconds

Construction stage analysis of three-dimensional cable-stayed bridges

  • Atmaca, Barbaros;Ates, Sevket
    • Steel and Composite Structures
    • /
    • v.12 no.5
    • /
    • pp.413-426
    • /
    • 2012
  • In this paper, nonlinear static analysis of three-dimensional cable stayed bridges is performed for the time dependent materials properties such as creep, shrinkage and aging of concrete and relaxation of cable. Manavgat Cable-Stayed Bridge is selected as an application. The bridge located in Antalya, Turkey, was constructed with balanced cantilever construction method. Total length of the bridge is 202 m. The bridge consists of one $\ddot{e}$ shape steel tower. The tower is at the middle of the bridge span. The construction stages and 3D finite element model of bridge are modeled with SAP2000. Large displacement occurs in these types of bridges so geometric nonlinearity is taken into consideration in the analysis by using P-Delta plus large displacement criterion. The time dependent material strength and geometric variations are included in the analysis. Two different finite element analyses carried out which are evaluated with and without construction stages and results are compared with each other. As a result of these analyses, variation of internal forces such as bending moment, axial forces and shear forces for bridge tower and displacement and bending moment for bridge deck are given with detailed. It is seen that construction stage analysis has a remarkable effect on the structural behavior of the bridge.

IN-PILE PERFORMANCE OF HANA CLADDING TESTED IN HALDEN REACTOR

  • Kim, Hyun-Gil;Park, Jeong-Yong;Jeong, Yong-Hwan;Koo, Yang-Hyun;Yoo, Jong-Sung;Mok, Yong-Kyoon;Kim, Yoon-Ho;Suh, Jung-Min
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.423-430
    • /
    • 2014
  • An in-pile performance test of HANA claddings was conducted at up to 67 GWD/MTU in the Halden research reactor in Norway over a 6.5 year period. Four types of HANA claddings (HANA-3, HANA-4, HANA-5, and HANA-6) and a reference Zircaloy-4 cladding were used for the in-pile test. The evaluation parameters of the HANA claddings were the corrosion behavior, dimensional changes, hydrogen uptake, and tensile strength after the claddings were tested under the simulated operation conditions of a Korean commercial reactor. The oxide thickness ranged from 15 to 37 mm at a high flux region in the test rods, and all HANA claddings showed corrosion resistance superior to the Zircaloy-4 cladding. The creep-down rate of all HANA claddings was lower than that of the Zircaloy-4 cladding. In addition, the hydrogen content of the HANA claddings ranged from 54 to 96 wppm at the high heat flux region of the test rods, whereas the hydrogen content of the Zircaloy-4 cladding was 119 wppm. The tensile strength of the HANA and Zircaloy-4 claddings was similarly increased when compared to the un-irradiated claddings owing to the radiation-induced hardening.

Time-Dependent Deflections of Prestressed Concrete Bridges Constructed by the Segmental Cantilever Method (캔틸레버 시공법에 의해 가설되는 프리스트레스트 콘크리트 교량의 장기처짐해석)

  • Oh, Byung Hwan;Choi, Kye Shick
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.49-58
    • /
    • 1990
  • A numerical procedure is developed to analyze the time-dependent deflections of prestressed concrete bridges constructed by the segmental cantilever method. The developed computer program accounts for the time-dependent properties of prestressed concrete materials due to the varying modulus of elasticity, creep and shrinkage of concrete and the stress relaxation of prestressing steel. It also accounts for the stiffness increase due to the presence of the steel reinforcements and the effects of the shear deformation of the prestressed concrete bridge girders. The program is applied to a multi-span continuous segmental prestressed concrete bridge to demonstrate its capabilities and to explore the behavior characteristics of the segmental bridges.

  • PDF

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (II) - Life Prediction and Failure Mechanism - (냉간 가공된 316L 스테인리스 강의 저주기 피로 거동에 미치는 온도의 영향 (II) - 수명예측 및 파손 기구 -)

  • Hong, Seong-Gu;Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1676-1685
    • /
    • 2003
  • Tensile and low cycle fatigue tests on prior cold worked 3l6L stainless steel were carried out at various temperatures ftom room temperature to 650$^{\circ}C$. Fatigue resistance was decreased with increasing temperature and decreasing strain rate. Cyclic plastic deformation, creep, oxidation and interactions with each other are thought to be responsible for the reduction in fatigue resistance. Currently favored life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress-strain relation strongly depends on temperature. A phenomenological life prediction model was proposed to account for the influence of temperature on fatigue life and assessed by comparing with experimental result. LCF failure mechanism was investigated by observing fracture surfaces of LCF failed specimens with SEM.

Viscoelastic Bending Behaviors of Unidirectional Fiber Reinforced Composite C-rings with Asymmetric Material Properties (비대칭물성을 고려한 일축방향 섬유강화 복합재료 C링의 점탄성적 거동해석)

  • 이명규;이창주;박종현;정관수;김준경;강태진
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.18-30
    • /
    • 2000
  • In order to optimize the design of unidirectional fiber reinforced composite C-rings, a viscoelastic load relaxation behavior was analyzed under a point load. Initially, the deflection and bending stiffness were calculated based on the elastic beam theory and the viscoelastic relaxation and creep behaviors were derived from the elastic solution using the correspondence theorem. Besides the orthotropic mechanical properties of the composite, asymmetric mechanical property due to the different tensile and compressive properties were also considered. Except the deviation affected by the relatively large thickness of the specimen compared to the radius, the calculated relaxation showed good agreement with the experimental result.

  • PDF

Effect of Si and Ca Addition on the Strengthening Behavior of Gravity-cast AM60 Magnesium Alloys (중력주조 AM60 마그네슘 합금의 강화 거동에 미치는 Si 및 Ca 첨가영향)

  • Kim, Jae-Woo;Kim, Do-Hyang;Shin, Kwang-Seon
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.364-372
    • /
    • 1998
  • Effects of Si and Ca additions on the mechanical properties of AM60 based Mg alloys have been investigated. Hardness of the AM60 based Mg alloys reached a maximum value after aging for approximately 33 hours but the amount of hardness increase was negligible. The poor age hardening response of the alloys was due to low Al content, which implies that Al content must be >6 wt.% to observe age hardening effect. The tensile and yield strength increased with increasing Al, Si, and Ca content but elongation decreased with increasing Al and Si content. The best mechanical properties obtained in AM 40-2.5Si-0.2Ca alloy after T4 heat treatment were as follows; tensile strength 193.4 MPa, yield strength 79.2 MPa, and elongation 11.2%. High temperature property obtained from creep test was also improved by introducing $Mg_2Si$ which has high hardness, high melting temperature and low thermal expansion coefficient.

  • PDF

Hydrogel microrheology near the liquid-solid transition

  • Larsen, Travis;Schultz, Kelly;Furst, Eric M.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.165-173
    • /
    • 2008
  • Multiple particle tracking microrheology is used to characterize the viscoelastic properties of biomaterial and synthetic polymer gels near the liquid-solid transition. Probe particles are dispersed in the gel precursors, and their dynamics are measured as a function of the extent of reaction during gel formation. We interpret the dynamics using the generalized Stokes-Einstein relationship (GSER), using a form of the GSER that emphasizes the relationship between the probe particle mean-squared displacement and the material creep compliance. We show that long-standing concepts in gel bulk rheology are applicable to microrheological data, including time-cure superposition to identify the gel point and critical scaling exponents, and the power-law behavior of incipient network's viscoelastic response. These experiments provide valuable insight into the rheology, structure, and kinetics of gelling materials, and are especially powerful for studying the weak incipient networks of dilute gelators, as well as scarce materials, due to the small sample size requirements and rapid data acquisition.

Redistribution of Vacancy Concentration in Metal Specimens under Stress-induced Diffusion at a High Temperature (고온 환경하 응력 확산에 의한 금속시편내 격자결함 재분포)

  • Yoon, Seon-Jhin;Cho, Yong-Moo
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • In this study, we calculated the redistribution of vacancy concentration in metal specimens induced by stress-induced diffusion at a high temperature. To deduce the governing equation, we associated the unit volume change equation of strains with a differential equation of vacancy concentration as a function of stress using the stress-strain relationship. In this governing equation, we considered stress as the only chemical potential parameter to stay in the scope of this study, which provided the vacancy concentration equation as of stress gradient in metals. The equation was then mathematically delineated to derive a analytical solution for a transient, one-dimensional diffusion case. With the help of Korhonen's approximation and the boundary conditions, we successfully deduced a general solution from the governing equation. To visualize the feasibility of our solutions, we applied the solution to two different stress-induced cases - a rod with fixed concentrated stresses at both ends and a rod with varying concentrated stresses at both ends. Although it is necessary to legitimatized the model in the future for improvement, our results showed that the model can be used to interpret the location of structural defects, the formation of vacancy, and furthermore the high temperature behavior of metals.

VERIFICATION OF COSMOS CODE USING IN-PILE DATA OF RE-INSTRUMENTED MOX FUELS

  • Lee, Byung-Ho;Koo, Yang-Hyun;Cheon, Jin-Sik;Oh, Je-Yong;Joo, Hyung-Kook;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.05a
    • /
    • pp.242-242
    • /
    • 2002
  • Two MIMAS MaX fuel rods base-irradiated in a commercial PWR have been reinstrumented and irradiated at a test reactor. The fabrication data for two MOX roda are characterized together with base irradiation information. Both Rods were reinstrumented to be fitted with thermocouple to measure centerline temperature of fuel. One rod was equipped with pressure transducer for rod internal pressure whereas the other with cladding elongation detector. The post irradiation examinations for various items were performed to determine fuel and cladding in-pile behavior after base irradiation. By using well characterized fabrication and re-instrumentation data and power history, the fuel performance code, COSMOS, is verified with measured in-pile and PIE information. The COMaS code shows good agreement for the cladding oxidation and creep, and fission gas release when compared with PIE dad a after base irradiaton. Based on the re-instrumention information and power history measured in-pile, the COSMOS predicts re-instrumented in-pile thermal behaviour during power up-ramp and steady operation with acceptable accuracy. The rod internal pressure is also well simulated by COSMOS code. Therfore, with all the other verification by COSMOS code up to now, it can be concluded that COSMOS fuel performance code is applicable for the design and license for MaX fuel rods up to high burnup.

  • PDF

New Generation of Lead Free Paste Development

  • Albrecht Hans Juergen;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.233-241
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces strictly related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF