• Title/Summary/Keyword: Creep behavior

Search Result 593, Processing Time 0.037 seconds

A Study on the Flexural Damage of RC Beams Under Fatigue Loading Using A Cyclic Creep Characteristics (반복크리프 특성을 이용한 피로하중을 받는 RC 보의 휨손상 연구)

  • 오병환;김동욱;홍경옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.365-370
    • /
    • 1998
  • The creep strain of the compression zone of concrete beams subjected to cyclic loading should be a significant factor in increasing strain and deflections. An analytical model which is similar to a previous one is presented to predict the increase in cyclic creep strain and the damage using the properties of the constituent materials: concrete and steel. The analytical expressions are compared with our experimental data. The effect of concrete-creep is accounted by the term En, Icr,n, and Mcr,n. In this study, it is proved that cyclic creep exponents 'n' in Cyclic Creep Model, according to the parameters -strength, range of stress- have the various values. It is hoped that with the availability of more experimental data and better understanding of some of the complex behavior, the model could be further improved.

  • PDF

Creep effects on dynamic behavior of concrete filled steel tube arch bridge

  • Ma, Y.S.;Wang, Y.F.;Mao, Z.K.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • Long-term properties of concrete affect structures in many respects, not excepting dynamic behaviors. This paper investigates the influence of concrete creep on the dynamic behaviors of concrete filled steel tube (CFT) arch bridges, by means of combining the analytical method for the creep of axially compressed CFT members, which is based on Model B3 for concrete creep, with the finite element model of CFT arch bridges. By this approach, the changes of the stress and strain of each element in the bridge with time can be obtained and then transformed into damping and stiffness matrices in the dynamic equation involved in the finite element model at different times. A numerical example of a long-span half-through CFT arch bridge shows that creep influences the natural vibration characteristics and seismic responses of the bridge considerably, especially in the early age. In addition, parameter analysis demonstrates that concrete composition, compressive strength and steel ratio have an obvious effect on the seismic response of the CFT arch bridge.

Creep Properties of AZ31 Magnesium Alloy at Elevated Temperature (AZ31 마그네슘 합금의 고온 크리프 특성)

  • Chung, Chin-Sung;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.20-26
    • /
    • 2009
  • The creep deformation behavior of AZ31 magnesium alloy was examined in the temperature range from 573 to 673K (0.62 to 0.73 Tm) under various constant stresses covering low strain rate range from $4{\times}10^{-9}\;s^{-1}$ to $2{\times}10^{-2}\;s^{-1}$. At low stress level, the stress exponent for the steady-state creep rate was ~3 and the present results were in good agreement with the prediction of Takeuchi and Argon model. At high stress level, the stress exponent was ~5 and the present results were in good agreement with the prediction of Weertman model. The transition of deformation mechanism from solute drag creep to dislocation climb creep could be explained in terms of solute-atmospherebreakaway concept.

Experimental study on long-term behavior of RC columns subjected to sustained eccentric load

  • Kim, Chang-Soo;Gong, Yu;Zhang, Xin;Hwang, Hyeon-Jong
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.289-299
    • /
    • 2020
  • To investigate the long-term behavior of eccentrically loaded RC columns, which are more realistic in practice than concentrically loaded RC columns, long-term eccentric loading tests were conducted for 10 RC columns. Test parameters included concrete compressive strength, reinforcement ratio, bar yield strength, eccentricity ratio, slenderness ratio, and loading pattern. Test results showed that the strain and curvature of the columns increased with time, and concrete forces were gradually transferred to longitudinal bars due to the creep and shrinkage of concrete. The long-term behavior of the columns varied with the test parameters, and long-term effects were more pronounced in the case of using the lower strength concrete, lower strength steel, lower bar ratio, fewer loading-step, higher eccentricity ratio, and higher slenderness ratio. However, in all the columns, no longitudinal bars were yielded under service loads at the final measuring day. Meanwhile, the numerical analysis modeling using the ultimate creep coefficient and ultimate shrinkage strain measured from cylinder tests gave quite good predictions for the behavior of the columns.

Creep of stainless steel under heat flux cyclic loading (500-1000℃) with different mechanical preloads in a vacuum environment using 3D-DIC

  • Su, Yong;Pan, Zhiwei;Peng, Yongpei;Huang, Shenghong;Zhang, Qingchuan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.759-768
    • /
    • 2019
  • In nuclear fusion reactors, the key structural component (i.e., the plasma-facing component) undergoes high heat flux cyclic loading. To ensure the safety of fusion reactors, an experimental study on the temperature-induced creep of stainless steel under heat flux cyclic loading was performed in the present work. The strains were measured using a stereo digital image correlation technique (3D-DIC). The influence of the heat haze was eliminated, owing to the use of a vacuum environment. The specimen underwent heat flux cycles ($500^{\circ}C-1000^{\circ}C$) with different mechanical preloads (0 kN, 10 kN, 30 kN, and 50 kN). The results revealed that, for a relatively large preload (for example, 50 kN), a single temperature cycle can induce a residual strain of up to $15000{\mu}{\varepsilon}$.

Creep properties and damage model for salt rock under low-frequency cyclic loading

  • Wang, Jun-Bao;Liu, Xin-Rong;Liu, Xiao-Jun;Huang, Ming
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.569-587
    • /
    • 2014
  • Triaxial compression creep tests were performed on salt rock samples using cyclic confining pressure with a static axial pressure. The test results show that, up to a certain time, changes in the confining pressure have little influence on creep properties of salt rock, and the axial creep curve is smooth. After this point, the axial creep curve clearly fluctuates with the confining pressure, and is approximately a straight line both when the confining pressure decreases and when it increases within one cycle period. The slope of these lines differs: it is greater when the confining pressure decreases than when it increases. In accordance with rheology model theory, axial creep equations were deduced for Maxwell and Kelvin models under cyclic loading. These were combined to establish an axial creep equation for the Burgers model. We supposed that damage evolution follows an exponential law during creep process and replaced the apparent stress in creep equation for the Burgers model with the effective stress, the axial creep damage equation for the Burgers model was obtained. The model suitability was verified using creep test results for salt rock. The fitting curves are in excellent agreement with the test curves, so the proposed model can well reflect the creep behavior of salt rock under low-frequency cyclic loading. In particular, it reflects the fluctuations in creep deformation and creep rate as the confining pressure increasing and decreasing under different cycle periods.

Short-time creep, fatigue and mechanical properties of 42CrMo4 - Low alloy structural steel

  • Brnic, Josip;Canadija, Marko;Turkalj, Goran;Krscanski, Sanjin;Lanc, Domagoj;Brcic, Marino;Gao, Zeng
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.875-888
    • /
    • 2016
  • The proper selection of materials for the intended use of the structural member is of particular interest. The paper deals with determining both the mechanical properties at different temperatures and the behavior in tensile creep as well as fatigue testing of tensile stressed specimens made of low alloy 42CrMo4 steel delivered as annealed and cold drawn. This steel is usually used in engineering practice in design of statically and dynamically stressed components. Displayed engineering stress - strain diagrams indicate the mechanical properties, creep curves indicate the material creep behavior while experimental investigations of fatigue may ensure the fatigue limit determination for considered stress ratio. Also, hardness testing provides an insight into material resistance to plastic deformation. Experimentally obtained results regarding material properties were: tensile strength (735 MPa / $20^{\circ}C$, 105 MPa / $680^{\circ}C$), yield strength (593 MPa / $20^{\circ}C$, 76 MPa / $680^{\circ}C$). Fatigue limit in the amount of 532.26 MPa, as maximum stress at stress ratio R = 0.25 at ambient temperature was calculated on the basis of experimentally obtained results. Regarding the creep resistance it is visible that this steel can be treated as creep resistant at high temperatures (including $580^{\circ}C$) when applied stress is of low level (till 0.2 of yield stress).

Ultrasonic Nondestructive Evaluation of Creep-Induced Cavities (크리프 기공의 초음파 비파괴평가에 관한 연구)

  • Jang, Young-Su;Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.110-117
    • /
    • 1999
  • In order to ultrasonically evaluate creep cavities pure copper samples were subjected to creep test and their microstructures were examined. Ultrasonic velocities. frequency-dependent magnitude spectra and attenuations were measured on a series of copper samples obtained from the different stages of creep test. Velocities measured in three directions with respect to the loading axis decreased and their anisotropy increased as a function of the creep-induced porosity. The anisotropic behavior could be attributed to the progressive change of pore shape and preferred orientation as the creep advanced. The 2% porosity by volume decreased the longitudinal and shear wave velocities by 11% and 4%, respectively. Furthermore, both velocities decreased nonlinearly with the porosity. As the creep damage developed, the magnitude spectra lost high frequency components and their central frequencies shifted to lower values. The attenuation showed almost linear behavior in the frequency range used. Normalized velocity, central frequency shift and attenuation slope were selected as nondestructive evaluation parameters. These results were presented and showed good relations with the porosity content.

  • PDF

Creep Behavior of Plastics Used in Automobile Instrument Panels (자동차 인스트루먼트 패널에 사용되는 플라스틱의 크리프 거동)

  • Kim, Young-Sam;Jeon, Chi-Hoon;Tumur-Ochir, Erdenebat;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1549-1556
    • /
    • 2011
  • Tensile and creep tests were performed at various temperatures to investigate the mechanical properties of plastics used in automotive instrument panels. Mechanical properties such as Young's modulus and Poisson's ratios changed markedly with the test temperature. Three-point bending creep tests were performed for three kinds of plastics under four loading conditions. Coefficients in the time-hardening power law creep equation were obtained from the experiment, and the creep behavior was represented by a simple expression. The results of finite element creep analysis showed good agreement with the experimental results, while the difference between the numerical and experimental results increased with the load.

Understanding the creep behavior of bentonite-sand mixtures as buffer materials in a low-level radioactive waste repository in Taiwan

  • Guo-Liang Ren;Wei-Hsing Huang;Hsin-Kai Chou;Chih-Chung Chung
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3884-3897
    • /
    • 2024
  • This study investigates the creep behavior of bentonite-sand mixtures as potential buffer materials for low-level radioactive waste (LLW) repositories, with a specific case study in Taiwan. To assess the long-term hydro-mechanical properties, constant-volume swelling pressure, hydraulic conductivity, strain-controlled shear, and stress-controlled shear tests were conducted on MX80 and KV1 bentonite-sand mixtures. The experimental results indicate that MX80-sand 70/30 mixtures are prioritized as the buffer materials with 2.10 MPa swelling pressure and 1 × 10-13 m/s hydraulic conductivity. However, the shear strength of mixtures was reduced by almost 50 % when fully saturated. Furthermore, this study proposed a novel stress-controlled direct shear apparatus to retrieve the creep model parameters. The numerical method based on the creep model efficiently supports and simulates the saturation process and creep displacement. The finite element method (FEM) result predicts that the buffer of both bentonite-sand mixtures will achieve an average degree of saturation of 95 % at the end of three decades and full saturation in 100 years. The simulated creep displacement results at key nodes suggest that both top and bottom parts in the buffer, assembled from MX80-sand 70/30 mixtures or KV1-sand 70/30 mixtures, will have almost equivalent values of 4 mm in the horizontal and 2 mm in the vertical directions eventually.