• Title/Summary/Keyword: Creep behavior

Search Result 591, Processing Time 0.027 seconds

Elastoplastic Behavior and Creep Analysis of Solder in a FC-PBGA Package (플립 칩 패키지 솔더의 탄소성 거동과 크립 해석)

  • Choi, Nam-Jin;Lee, Bong-Hee;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.21-28
    • /
    • 2010
  • Creep behaviors of the solder balls in a flip chip package assembly during thermal cycling test is investigated.. A material models used in the finite element analysis are viscoplastic model introduced by Anand and creep model called partitioned model. Experiment of two temperature cycles using moir$\acute{e}$ interferometry is conducted to verify the reliability of material models for the analysis of thermo-mechanical behavior. Bending deformations of the assemblies and average strains of the solder balls due to temperature change and dwell time are investigated. The results show that time-dependent shear strain of solder by the partitioned model is in excellent agreement with those by moir$\acute{e}$ interferometry, while there is considerable difference between results by Anand model and experiment. In this paper, the partitioned model is employed for the time-dependent creep analysis of the FC-PBGA package. It is also shown that the thermo-mechanical stress becomes relaxed by creep behavior at high temperature during temperature cycles.

Creep Characterization of 9Cr1Mo Steel Used in Super Critical Power Plant by Conversion of Stress and Strain for SP-Creep Test (SP-Creep 시험의 응력 및 변형률 환산에 의한 초임계압 발전설비용 9Cr1Mo강의 크리프 특성 평가)

  • Baek, Seung-Se;Park, Jung-Hun;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1034-1040
    • /
    • 2006
  • Due to the need of increasing thermal efficiency, supercritical pressure and temperature have been utilized in power plants. It is well known that 9Cr1Mo steel is suitable fer use in power plants operating at supercritical conditions. Therefore, to ensure the safety and the soundness of the power plant, creep characterization of the steel is important. In this study, the creep characterization of the gCr1Mo steel using small punch creep(SP-Creep) test has been described. The applied load and the central displacement of the specimen in SP-Creep test have been converted to bearing stress and strain of uc, respectively. The converted SP-Creep curves clearly showed the typical three-stage behavior of creep. The steady-state creep rate and the rupture time of the steel logarithmically changed with the bearing stress and satisfied the Power law relationship. Furthermore, the Larson-Miller parameter of the SP-Creep test agreed with that of the tensile creep test. From the comparison with low Cr-Mo steels, the creep characteristics of 9Cr1Mo steel proved to be superior. Thus, it can be confirmed that the 9Cr1Mo steel is suitable for supercritical power plant.

New phenomenological creep model for predicting creep of concrete with silica fume

  • Zgheib, Elise;Sawma, Rodolph;El Khoury, Judith;Raphael, Wassim
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.71-77
    • /
    • 2022
  • Creep phenomenon affects the stability and integrity of concrete structures. An inaccurate prediction of these strains may lead to the appearance of cracks and excessive deflections which may cause in some cases the demolition of structures. In fact, the measured values of these uncontrolled strains appear often to be clearly different and larger than the expected ones. Therefore, an accurate prediction of concrete deformations is a necessity. As a matter of fact, the codified descriptions of this phenomenon are unreliable and don't consider the effect of admixtures. The physical nature of creep is not well understood and almost all creep models are mainly of empirical nature. To overcome this issue, a study of the correlation between different parameters affecting concrete creep is performed and a new model for predicting creep of concrete is elaborated. This new model considers the effect of admixtures, specifically the silica fume, in predicting concrete creep and allows an accurate prediction of this phenomenon. The proposed model is based on the observation of physical behavior of creep phenomenon. It targets at expressing creep compliance in terms of structural and environmental parameters. In fact, the experimental observations show that creep curves follow two kinetic regimes leading to a model called Phenomenological Creep Model. By adequate regressions and substitutions, and according to this model, we can express creep compliance in terms of structural, environmental parameters and admixture types and percentage. The proposed new Phenomenological Creep Model Silica Fume (PCM19SF) calculates accurately creep of concrete by considering the effect of silica fume.

Creep Behavior of Press Joined Molding GMT-Sheet (프레스 접합성형 GMT-Sheet의 크리프 특성)

  • Choi, Yu-Seong;Kim, Hyuk;Kang, Myoung-Goo;Lee, Dong-Gi;Han, Gil-Young;Kim, E-Gon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.171-177
    • /
    • 2000
  • It is essential to understand the creep behavior, which shows how long the characteristics of material maintains because press joined molding GMT-Sheet for recycle is usually used in the severe environment. In this study, we predict joining strength of GMT-Sheet for recycle, when lap length was changed. and we will investigate how compression ratio have an effect on creep behavior in press joined molding. The result of experiment of forming condition concerned with joining problem of GMT-Sheet is as followings joining efficiency. of GMT-Sheet, increases as lap joint length I, increases. Increase of compression ratio causes decrease o f joining efficiency after of GMT-Sheet joining. As the result of creep test, GMT-Sheet is easily damaged in high temperature range, because it is sensitive to the temperature

  • PDF

Reliable experimental data as a key factor for design of mechanical structures

  • Brnic, Josip;Krscanski, Sanjin;Brcic, Marino;Geng, Lin;Niu, Jitai;Ding, Biao
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.245-256
    • /
    • 2019
  • The experimentally determined mechanical behavior of the material under the prescribed service conditions is the basis of advanced engineering optimum design. To allow experimental data on the behavior of the material considered, uniaxial stress tests were made. The aforementioned tests have enabled the determination of mechanical properties of material at different temperatures, then, the material's resistance to creep at various temperatures and stress levels, and finally, insight into the uniaxial high cyclic fatigue of the material under different applied stresses for prescribed stress ratio. Based on fatigue tests, using modified staircase method, fatigue limit was determined. All these data contributes the reliability of the use of material in mechanical structures. Data representing mechanical properties are shown in the form of engineering stress-strain diagrams; creep behavior is displayed in the form of creep curves while fatigue of the material is presented in the form of S-N (maximum applied stress versus number of the cycles to failure) curve. Material under consideration was 18CrNi8 (1.5920) steel. Ultimate tensile strength and yield strength at room temperature and at temperature of $600^{\circ}C$: [${\sigma}_{m,20/600}=(613/156)MPa$; ${\sigma}_{0.2,20/600}=(458/141)MPa$], as well as endurance (fatigue) limit at room temperature and stress ratio of R = -1 : (${\sigma}_{f,20,R=-1}=285.1MPa$).

Creep Behavior of High-Strength Concrete with Nylon Fibers at Elevated Temperatures (고온을 받은 나일론 섬유 보강 고강도 콘크리트의 크리프 거동)

  • Kim, Young-Sun;Lee, Tae-Gyu;Kim, Woo-Jae;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.627-636
    • /
    • 2011
  • Recently, to prevent explosive spalling of high-strength concrete (HSC) members, the usage of nylon fiber instead of polypropylene fiber has increased. Past experimental studies have been conducted to examine the spalling and mechanical properties of HSC with nylon fibers when exposed to elevated temperature. However, the previous studies on HSC with nylon fibers subjected to high temperatures were performed only on the properties such as spalling, compressive strength, and elastic modulus rather than investigations on to the behaviors such as thermal strain, total strain, steady state creep, and transient creep. Therefore, in this study thermal strain, total strain, steady state creep, and transient creep of HSC mixed with nylon fibers with water to binder ratio of 0.30 to 0.15 were tested. The experimental results showed that nylon fibers did not affect the performance of HSC with nylon fibers at high temperatures. However, HSC with nylon fibers generated a larger transient creep strain than that of HSC without fibers and normal strength concrete.

The Prediction of tong-Term Creep Behavior of Recycled PET Polymer Concrete (단기 크리프 실험을 이용한 PET 재활용 폴리머콘크리트의 장기 크리프거동 예측)

  • Jo Byung-Wan;Tae Ghi-Ho;Kim Chul-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.521-528
    • /
    • 2004
  • In general, polymer concrete has more excellent mechanical properties and durability than Portland cement concrete, but very sensitive to heat and has large deformations. In this study, the long-term creep behaviors was predicted by the short-term creep test, and then the characteristic of creep of recycled-PET polymer concrete was defined by material and experimental variables. The error in the predicted long-term creep values is less than 5 percent for all polymer concrete systems. The filler carry out an important role to restrict the creep strains of recycled PET Polymer concrete. The creep strain and specific on using the $CaCO_3$ were less than using fly-ash. The creep increases with an increase in the applied stress, but not proportional the rate of stress increase ratio. The creep behavior of polymer concrete using recycled polyester resin is not a linear viscoelastic behavior.

Characteristics of Creep Deformation Behavior of Granite under Uniaxial Compression (단축압축하중을 받는 대전 화강암의 크립 변형거동 특성에 관한 연구)

  • 홍지수;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.69-77
    • /
    • 2004
  • Investigation of the time-dependent behavior of rock and the associated mechanisms are of key interest in long-term stability analysis of many engineering applications. In this study, creep tests were performed on Daejeon granite samples of 25.4mm diameter under uniaxial compression at varying stress levels. The effect of moisture was investigated by testing both air-dried and fully water-saturated samples. The creep behavior of Daejeon granite exhibited three distinctive stages of primary, secondary and tertiary creep. The ultimate strength of granite under a constant stress decreased considerably with time. Saturation and immersion of the test specimen in water markedly increased the total creep strain as well as the secondary creep rate. The experimental creep curves are fitted to Burger's model as well as two other empirical models suggested by previous researchers. A number of the parameters determined for each model are dependent on stress and influenced by the presence of water. Based on the experimental results, an empirical relation between the applied stress and the time-dependent strain is established separately for each air-dried and fully water-saturated Daejeon granite.

A Study on the Creep Fracture Life of Al 7075 Alloy(II) (Al 7075 합금의 크리이프 파단수명에 관한 연구(II))

  • 강대민
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.29-41
    • /
    • 1994
  • High temperature tensiles tests, steady state creep tests, internal stress tests and creep rupture tests using Al 7075 alloy were performed over the temperature range of 9$0^{\circ}C$~50$0^{\circ}C$ and stress range of 0.64~17.2(kgf/$\textrm{mm}^2$) in order to investigate the creep behavior and predict creep rupture life From the apparent activation energy Qc and the applied stress exponent n measured, at the temperature range of 9$0^{\circ}C$~l2$0^{\circ}C$, the creep deformation seemed to be controlled by cross slip. On the other hand at the temperature of 20$0^{\circ}C$~23$0^{\circ}C$ the creep deformation seemed to be controlled by dislocation climb but at 47$0^{\circ}C$~50$0^{\circ}C$, by diffusion creep. And the rupture life(t$_{f}$) might be represented by anthermal process attributed to the difference of the applied stress dependence of Internal stress and the ratio of the Internal stress to the applied stress, the thermal activated process attributied to the temperature dependence of the internal stress. Also the ratio between stress dependence of primary creep rate and that of minimum creep rate was measured 0.46, the minimum creep rate is expected to be appromately obtained from master creep curve including the relationship primary creep rate and minumum creep rate. Finally the relationship new rupture parameter and logarithmic stress was represented with including the ratio between the dependence of primary creep rate and that of minimum creep rate, using the new rupture parameter the rupture life predition is exactly expected.d.

  • PDF

Effect of Alloying Elements on Creep Behavior of Mg-Al Alloys (Mg-Al 합금의 크리프 거동에 미치는 합금원소의 영향)

  • Lim, Hyun-Kyu;Kim, Shae-K.;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.44-49
    • /
    • 2012
  • In this study, three magnesium alloys were investigated; those are 1.5wt.% CaO added AM80, 1.0wt.% CaO added AM60, and conventional MRI153 alloys. Test specimens of three alloys were prepared by re-melting and casting into steel mold with ingots and machining. The mechanical properties and the creep behavior at 150 degrees Celsius of these specimens were determined and their microstructures were characterized using OM and SEM. For the application to die-casting, fluidity test were carried out with spiral mold. Compared with 1.0wt.% CaO added AM60 alloy, 1.5wt.% CaO added AM80 alloy exhibited good creep properties in all test conditions. Moreover, CaO added alloys showed better creep properties than MRI153 alloy at lower load condition. It is proposed that 1.5wt.% CaO added AM80 alloy is useful to apply to power-train parts such as transmission case in vehicles.