DOI QR코드

DOI QR Code

Creep Behavior of High-Strength Concrete with Nylon Fibers at Elevated Temperatures

고온을 받은 나일론 섬유 보강 고강도 콘크리트의 크리프 거동

  • Kim, Young-Sun (Dept. of Architectural Engineering, Chungnam National University) ;
  • Lee, Tae-Gyu (Dept. of Architectural Engineering, Chungnam National University) ;
  • Kim, Woo-Jae (POSCO E&C R&D Center) ;
  • Kim, Gyu-Yong (Dept. of Architectural Engineering, Chungnam National University)
  • Received : 2011.04.18
  • Accepted : 2011.05.30
  • Published : 2011.10.31

Abstract

Recently, to prevent explosive spalling of high-strength concrete (HSC) members, the usage of nylon fiber instead of polypropylene fiber has increased. Past experimental studies have been conducted to examine the spalling and mechanical properties of HSC with nylon fibers when exposed to elevated temperature. However, the previous studies on HSC with nylon fibers subjected to high temperatures were performed only on the properties such as spalling, compressive strength, and elastic modulus rather than investigations on to the behaviors such as thermal strain, total strain, steady state creep, and transient creep. Therefore, in this study thermal strain, total strain, steady state creep, and transient creep of HSC mixed with nylon fibers with water to binder ratio of 0.30 to 0.15 were tested. The experimental results showed that nylon fibers did not affect the performance of HSC with nylon fibers at high temperatures. However, HSC with nylon fibers generated a larger transient creep strain than that of HSC without fibers and normal strength concrete.

최근 고강도 콘크리트의 폭렬 방지용 보강 섬유로서 폴리프로필렌 섬유를 대신하여 나일론 섬유의 사용이 증가됨에 따라 고온에 노출된 나일론 섬유를 혼입한 고강도 콘크리트의 폭렬 및 역학적 특성에 관한 실험적 연구가 수행되고 있다. 그러나, 고온을 받은 나일론 섬유 보강 고강도 콘크리트에 관한 연구는 주로 폭렬 특성, 압축강도 및 탄성계수에 대한 평가만이 수행되고 있으며, 열팽창 변형, 전체 변형, 크리프 변형 및 과도 변형과 같은 거동은 평가된 바가 없다. 따라서 이 연구에서는 W/B 0.30~0.15에 따른 나일론 섬유를 혼입한 고강도 콘크리트에 대하여 열팽창 변형, 전체 변형, 크리프 및 과도 변형 등을 평가하였다. 실험 결과, 나일론 섬유는 고온을 받은 나일론 섬유를 혼입한 고강도 콘크리트의 성능에 특별한 영향을 미치지 않는 것으로 보였으며, 나일론 섬유 보강 고강도 콘크리트는 섬유를 혼입하지 않은 고강도 콘크리트 또는 보통 강도 콘크리트보다 큰 과도 변형을 나타냈다.

Keywords

References

  1. Kim, G. Y., Kim, Y. S., and Lee, T. G., "Mechanical Properties of High-Strength Concrete Subjected to High Temperature by Stressed Test," Transactions of Nonferrous Metals Society of China, Vol. 19, 2009, pp. 128-133. https://doi.org/10.1016/S1003-6326(10)60260-9
  2. 김규용, 김영선, 이태규, 박찬규, 이승훈, "설계 하중 사전재하 및 비재하 방식에 의한 고강도 콘크리트의 고온 특성 평가," 콘크리트학회 논문집, 20권, 5호, 2008, pp. 583-592.
  3. Kim, G. Y., Kim, Y. S., and Lee, T. G., "An Experimental Study on the Explosive Spalling Properties of High Strength Concrete with Contents of Fiber and Prestresed," 9th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-9), Sydney Australia, 2009, pp. 1-4.
  4. 한천구, 한민철, 김원기, 이주선, "고강도 콘크리트의 폭렬 방지에 미치는 혼화재 및 PP 섬유의 영향," 대한건축학회 논문집(구조계), 25권, 11호, 2009, pp. 105-111.
  5. 염광수, 전현규, 김흥열, "섬유 혼입 공법을 적용한 고강도 콘크리트 기둥의 비재하 내화 시험," 콘크리트학회 논문집, 21권, 4호, 2009, pp. 465-471.
  6. 원종필, 장창일, 김흥열, 김완영, "폴리프로필렌 섬유 혼입률에 따른 고강도 콘크리트 기둥 부재의 폭렬 및 내부 온도 분포 특성," 콘크리트학회 논문집, 20권, 6호, 2008, pp. 821-826.
  7. Kalifa, P., Chene, G., and Galle, C., "High-Temperature Behaviour of HPC with Polypropylene Fibres from Spalling to Microstructure," Cement and Concrete Research, Vol. 31, 2001, pp. 1487-1499. https://doi.org/10.1016/S0008-8846(01)00596-8
  8. Bilodeau, A., Kodur, V. K. R., and Hoff, G. C., "Optimization of the Type and Amount of Polypropylene Fibres for Preventing the Spalling of Lightweight Concrete Subjected to Hydrocarbon Fire, Cement & Concrete Composites, Vol. 26, 2004, pp. 163-174. https://doi.org/10.1016/S0958-9465(03)00085-4
  9. 김영선, "섬유를 혼입한 고강도 철근콘크리트 기둥의 내화 특성 평가에 관한 연구," 충남대학교 학위논문, 박사학위, 2010, pp. 154-168.
  10. 한천구, 양성환, 한민철, 송용원, "PP와 NY섬유의 형상비 및 혼입률 변화에 따른 고강도 콘크리트의 폭렬 방지 특성," 대한건축학회 논문집(구조계), 24권, 7호, 2008, pp. 69-76.
  11. Lee, T. G., Kim, G. Y., Miyauchi, H., Kim, Y. S., Chung, C. S., Jun, Y. S., Kim, W. J., Kim, M. H., "Evaluation on Fire Resistance Performance of Ultra High Strength Concrete Column Subjected to Axial Loading: Part 1 Temperature Histories of RC Column," Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan A-2, Fire Safety, 2010, pp. 75-76.
  12. 허영선, "초고강도 콘크리트의 내화성에 미치는 영향요인 분석 및 폭렬 메커니즘 구명," 청주대학교 석사학위 논문, 2007, pp. 195-215.
  13. Song, P. S., Hwang, S., Sheu, B. C., "Strength Properties of Nylon-and Polypropylene-Fiber-Reinforced Concretes," Cement and Concrete Research, Vol. 35, 2005, pp. 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
  14. Wu, B., Lam, S. S., Liu, Q., Chung, Y. M., Ho, L. F. Y., "Creep Behavior of High-Strength Concrete with Polypropylene Fibers at Elevated Temperatures," ACI Materials Journal, Vol. 107, No. 2, 2010, pp. 176-184.
  15. 강석원, 홍성걸, "고온에서의 콘크리트 재료모델과 열거 동해석," 콘크리트학회 논문집, 13권, 3호, 2001, pp. 268-276.
  16. 김흥열, 이세현, 서치호, "고온 가열시 콘크리트의 역학적 특성에 관한 실험적 연구," 대한건축학회 논문집(구조계), 18권, 11호, 2002, pp. 77-84.
  17. Anderberg, Y. and Thelandersson, S., "Stress and Deformation Characteristics of Concrete at High Temperature: Part 2 Experimental Investigation and Material Behaviour Model," Bulletin 54, University of Lund, Sweden, 1976, pp. 1-84.
  18. Hirashima, T., Toyoda, K., Yamashita, H., Tokoyoda, M., and Uesugi, H., "Compression Tests of High-Strength Concrete Cylinders at Elevated Temperature," International Workshop fib 2007, Fire Design of Concrete Structure, University of Coimbra, Portugal, 2007, pp. 1-12.
  19. Kodur, V. K. R. and Sultan, M. A., "Effect of Temperature on Thermal Properties of High-Strength Concrete," Journal of Materials in Civil Engineering, Vol. 15, No. 2, 2003, pp. 101-107. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(101)
  20. Khoury, G. A., "Strain of Heated Concrete during Two Thermal Cycles: Part 1 Strain Over Two Cycles, during First Heating and at Subsequent Constant Temperature," Magazine of Concrete Research, Vol. 58, No. 6, 2006, pp. 367-385. https://doi.org/10.1680/macr.2006.58.6.367
  21. Kim, G. Y., Miyauchi, H., Lee, T. G., Nam, J. S., Rahul, D., Kim, Y. S., Park, G. Y., and Kim, M. H., "Evaluation on Fire Resistance Performance of Ultra High Strength Concrete Column Subjected to Axial Loading: Part 2 Strain of RC Column," Summaries of Technical papers of Annual Meeting Architectural Institute of Japan A-2, Fire Safety, 2010, pp. 77-78.
  22. RILEM TC 129-MHT, "Test Methods for Mechanical Properties of Concrete at High Temperatures: Part 8 Steady-State Creep and Creep Recovery for Service and Accident Conditions," Materials and Structures, Vol. 33, 2000, pp. 6-13. https://doi.org/10.1007/BF02481690
  23. 김규용, 김영선, 이태규, 윤문기, "콘크리트의 고온 특성 평가를 위한 열전달 가열 시험 방법에 관한 기초적 연구," 대한건축학회 논문집(구조계), 24권, 4호, 2008, pp. 109-116.
  24. Schneider, U., Behaviour of Concrete at High Temperatures, Wilhelm Ernst & Sohn Verlag, Berlin, 1982, pp. 86-108.
  25. 김흥열, 이세현, 서치호, "고온 가열시 콘크리트의 강도 영역별 물리적 특성에 관한 실험적 연구," 대한건축학회 논문집(구조계), 20권, 11호, 2004, pp. 75-82.
  26. Guo, Z. H. and Shi, X. D., Behaviour of Reinforced Concrete at Elevated Temperature and Its Calculation, Tsinghua University Press, Beijing, China, 2003, 262 pp.
  27. Tokoyoda, M., Toyoda, K., Orimo, T., Kikuta, S., Takahashi, K., Hori, A., Matsudo, M., Nakagome, A., Hirasima, T., and Uesugi, H., "Experimental Study on Transient Strain of Normal Concrete," Jouranal of Structural Engineering, Vol. 48B, 2002, pp. 149-154.