• Title/Summary/Keyword: Creep Theory

Search Result 86, Processing Time 0.036 seconds

Software for application of Newton-Raphson method in estimation of strains in prestressed concrete girders

  • Gocic, Milan;Sadovic, Enis
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.121-133
    • /
    • 2012
  • Structures suffer from damages in their lifetime due to time-dependant effects, such as fatigue, creep and shrinkage, which can be expressed by concrete strains. These processes could be seen in the context of strain estimation of pre-stressed structures in two phases by using numerical methods. Their aim is checking and validating existing code procedures in determination of deformations of pre-tensioned girders by solving a system of nonlinear equations with strains as unknown parameters. This paper presents an approach based on the Newton-Raphson method for obtaining the stresses and strains in middle span section of pre-stressed girders according the equilibrium state.

Corrections to the conventional equations of motion of a wheel-axle set on a tangent track (직선 선로상 차륜-윤축에 대한 기존운동방정식의 수정)

  • Choi, Sung-Kyou
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.927-939
    • /
    • 2007
  • This paper concerns dynamics of a wheel-axle set on a tangent track which was already published in a book titled "Dynamics of Railway Vehicle Systems" authored by Garg and Dukkipati [1], pointing out several missing terms and erroneous parts in the derived expressions on the conventional governing equations of motion. It is indicated that the x-direction components of normal forces at left and right wheel-rail contact points in the equilibrium axis were missed. Another point is that in deriving the creepages the disturbed velocity components in both x and y directions in the equilibrium axis should not be disregarded in the first term of the numerators. When considering the creepage in the y direction in the body coordinate system, the second term of lateral velocity at the contact point also cannot be neglected. Besides, the hyper-assumptions in the final expressions of vertical components of normal forces at left and right wheel-rail contact points have been recovered in reaching the final stage of analytical model development. Finally it is noteworthy that the process of applying creep theory is deemed to contain a little bit inconsistencies and ambiguities to be clear.

  • PDF

A Computational Efficient General Wheel-Rail Contact Detection Method

  • Pombo Joao;Ambrosio Jorge
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.411-421
    • /
    • 2005
  • The development and implementation of an appropriate methodology for the accurate geometric description of track models is proposed in the framework of multibody dynamics and it includes the representation of the track spatial geometry and its irregularities. The wheel and rail surfaces are parameterized to represent any wheel and rail profiles obtained from direct measurements or design requirements. A fully generic methodology to determine, online during the dynamic simulation, the coordinates of the contact points, even when the most general three dimensional motion of the wheelset with respect to the rails is proposed. This methodology is applied to study specific issues in railway dynamics such as the flange contact problem and lead and lag contact configurations. A formulation for the description of the normal contact forces, which result from the wheel-rail interaction, is also presented. The tangential creep forces and moments that develop in the wheel-rail contact area are evaluated using : Kalker linear theory ; Heuristic force method ; Polach formulation. The methodology is implemented in a general multibody code. The discussion is supported through the application of the methodology to the railway vehicle ML95, used by the Lisbon metro company.

Characteristic of fatigue properties with tension and bending loading using high strength steel wire (고강도 강선의 인장 및 회전굽힘 피로특성)

  • Woo, Byung-Chul;Kim, Sang-Soo;Kim, Byung-Guel;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.274-279
    • /
    • 2000
  • The overhead transmission wires operating both at warm temperature and tighten state for a long period of time in a power transmission plant are degraded by air pollution, wind, creep and slip between steel wire and aluminium conductor. The objective of this study is to investigate a high carbon steel wire. We tested for basic mechanical properties and 3 types fatigue behavior, tension-tension, 4 points bending and 3 points bending fatigues. In this study, a conventional fatigue strengths between 4 points bending and tension-tension fatigue were determined by Gerber, Sorderberg and Goodman's theory and we investigated S-N diagram for bending and tensile loading.

  • PDF

On the attenuation of the axisymmetric longitudinal waves propagating in the bi-layered hollow cylinder made of viscoelastic materials

  • Kocal, Tarik;Akbarov, Surkay D.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.143-160
    • /
    • 2017
  • The paper studies the attenuation of the axisymmetric longitudinal waves propagating in the bi-layered hollow cylinder made of linear viscoelastic materials. Investigations are made by utilizing the exact equations of motion of the theory of viscoelasticity. The dispersion equation is obtained for an arbitrary type of hereditary operator of the materials of the constituents and a solution algorithm is developed for obtaining numerical results on the attenuation of the waves under consideration. Specific numerical results are presented and discussed for the case where the viscoelasticity of the materials is described through fractional-exponential operators by Rabotnov. In particular, how the rheological parameters influence the attenuation of the axisymmetric longitudinal waves propagating in the cylinder under consideration, is established.

A Study on the Factors Influencing the Non-Linear Stability of Railway Vehicles (철도차량의 비선형 안정성에 영향을 미치는 인자 연구)

  • Chung, Woo-Jin;Shin, Jeong-Ryol
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.513-518
    • /
    • 2001
  • This research has been performed to estimate the hunting motion hysteresis of railway passenger cars. An old and a new car with almost same structure are chosen as analysis models. To solve effectively a set of simultaneous equations of motion strongly coupled with creep relations, shooting algorithm in which the nonlinear relations are regarded as a two-point boundary value problem is adopted. The bifurcation theory is applied to the dynamic analysis to distinguish differences between linear and nonlinear critical speeds by variation of parameters. It is found that there are some factors and their operation area to make nonlinear critical speed respond to them more sensitivity than linear critical speed. Full-scale roller rig tests are carried out for the validation of the numerical results. Finally, it is concluded that the wear of wheel profile and the stiffness discontinuities of wheelset suspension caused by deterioration have to be considered in the analysis to predict hysteresis of critical speed precisely.

  • PDF

Creepage Model Analysis for a Tilting Train (틸팅열차의 크리피지 모델 해석)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Lee, Nam-Jin;Kim, Min-Soo;Goo, Byeong-Choon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.231-239
    • /
    • 2009
  • Traction and braking of trains are due to the rolling contact of the wheel on the rail, and the rolling contact is fundamental to an understanding of the behavior of the railroad system. The way in which the forces are transmitted in the rolling contact is complex and highly nonlinear. This paper describes a rolling contact theory, a creepage model between wheel and rail, and a dynamic model of the tilting train Hanvit-200. The validity of the model is verified through simulation study using Simulink.

Long-Term Torsional Analysis of Prestressed Concrete Members with the Effects of Creep and Shrinkage (크리이프 및 건조수축의 영향을 고려한 프리스트레스트콘크리트 부재의 장기 비틀림 해석)

  • Oh, Byung Hwan;Park, Chang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.741-749
    • /
    • 1994
  • The purpose of the present study is to propose a realistic method to analyze the prestressed concrete members subjected to long term torsional loading. The present study devises a method to realistically take into account the tensile stiffness of concrete after cracking. The effects of biaxial compressive and tensile loadings on the compressive and tensile strengths of concrete are also taken into account in the present model. The salient feature of the present study lies in the fact that the cracking, creep, and shrinkage behavior of concrete and the relaxation of steel have been realistically considered. The comparison of the present theory with experimental data indicates that the proposed model dipicts reasonably well the actual behavior of prestressed concrete members under long-term torsional loadings.

  • PDF

Vibration simulation of a multi-story high-speed railway station

  • Gao, Mangmang;Xiong, Jianzhen;Xu, Zhaojun
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.365-372
    • /
    • 2010
  • Station is an important building in high-speed railway, and its vibration and noise may significantly affect the comfort of waiting passengers. A coupling vibration model for train-structure system is established to analyze and evaluate the vibration level of a typical waiting hall under dynamic train load. The motion of a four-axle vehicle with two suspension system is modeled in multi-body dynamics with linear springs and dampers employed. The station is modeled as a whole finite element structure which is 113 m in longitudinal and 163.5 m in lateral, and the stiffness of the station foundation is considered. According to the assumptions that both wheel and rail are rigid bodies and keep contact to each other in vertical direction, and the wheel/rail interaction and displacement coordination in horizontal direction is defined by the simplified Kalker creep theory, the vehicle spatial vibration model has 27 degrees-of-freedom. An overall analysis procedure is made of the train moving through the station, by which the dynamic responses of the train and the station are calculated. According to the comparison between analysis and test results, the actual connection status between different parts of the station is estimated and the vibration level of the waiting hall is evaluated.

Viscoelastic Bending Behaviors of Unidirectional Fiber Reinforced Composite C-rings with Asymmetric Material Properties (비대칭물성을 고려한 일축방향 섬유강화 복합재료 C링의 점탄성적 거동해석)

  • 이명규;이창주;박종현;정관수;김준경;강태진
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.18-30
    • /
    • 2000
  • In order to optimize the design of unidirectional fiber reinforced composite C-rings, a viscoelastic load relaxation behavior was analyzed under a point load. Initially, the deflection and bending stiffness were calculated based on the elastic beam theory and the viscoelastic relaxation and creep behaviors were derived from the elastic solution using the correspondence theorem. Besides the orthotropic mechanical properties of the composite, asymmetric mechanical property due to the different tensile and compressive properties were also considered. Except the deviation affected by the relatively large thickness of the specimen compared to the radius, the calculated relaxation showed good agreement with the experimental result.

  • PDF