• Title/Summary/Keyword: Creep Theory

Search Result 86, Processing Time 0.029 seconds

Creep Design of Type 316LN Stainless Steel by K-R Damage Theory (K-R 손상이론에 의한 316LN 스테인리스강의 크리프 설계)

  • Kim, U-Gon;Kim, Dae-Hwan;Ryu, U-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.296-303
    • /
    • 2001
  • Kachanov-Rabotnov(K-R) creep damage theory was reviewed, and applied to design a creep curve for type 316LN stainless steel. Seven coefficients used in the theory, i.e., A, B, k, m, λ, r, and q were determined, and their physical meanings were analyzed clearly. In order to quantify a damage parameter ($\omega$), cavity amount was measured in the crept specimen taken from interrupted creep test with time variation, and then the amount was reflected into K-R damage equations. Coefficient λ, which is regarded as a creep tolerance feature of a material, increased with creep strain. Mater curve with λ=2.8 was well coincided with an experimental one to the full lifetime. The relationship between damage parameter and life fraction was matched with the theory at exponent ${\gamma}$=24 value. It is concluded that K-R damage equation was reliable as the modelling equation for type 316LN stainless steel. Coefficient data obtained from type 316LN stainless steel can be utilized for life prediction of operating material.

3D material model for nonlinear basic creep of concrete

  • Bockhold, Jorg
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.101-117
    • /
    • 2007
  • A new model predicting the nonlinear basic creep behaviour of concrete structures subjected to high multi-axial stresses is proposed. It combines a model based on the thermodynamic framework of the elasto-plastic continuum damage theory for time-independent material behaviour and a rheological model describing phenomenologically the long-term delayed deformation. Strength increase due to ageing is regarded. The general 3D solution for the creep theory is derived from a rate-type form of the uniaxial formulation by the assumption of associated creep flow and a theorem of energy equivalence. The model is able to reproduce linear primary creep as well as secondary and tertiary creep stages under high compressive stresses. For concrete in tension a simple viscoelastic formulation is applied. The material law is then incorporated into a finite element solution procedure for analysis of reinforced concrete structures. Numerical examples of uniaxial creep tests and concrete members show excellent agreement with experimental results.

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

Load Relaxation and Creep Transition Behavior of a Spray Cast Hypereutectic Al-Si Based Alloy (분무 주조 과공정 Al-Si계 합금의 응력이완 및 Creep 천이 거동)

  • Kim M. S.;Bang W.;Park W. J.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.176-179
    • /
    • 2005
  • Spray casting of hypereutectic Al-Si based alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. Hypereutectic Al-Si based alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, low coefficient of thermal expansion, high thermal stability, and good creep resistance. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. High temperature deformation behavior of the hypereutectic Al-Si based alloy has been investigated by applying the internal variable theory proposed by Chang et al. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test.

  • PDF

Prediction of Creep Behavior for Cohesive Soils (점성토에 있어서의 크리프 거동 예측)

  • Kim Dae-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.79-89
    • /
    • 2004
  • An elastic-plastic-viscous constitutive model was proposed based on a simple formulation scheme. The anisotropic modified Cam-Clay model was extended for the general stress space for the plastic simulation. The generalized viscous theory was simplified and used for the viscous constitutive part. A damage law was incoporated into the proposed constitutive model. The mathematical formulation and development of the model were performed from the point of view that fewer parameters be better employed. The creep behaviors with or without creep rupture were predicted using the developed model for cohesive soils. The model predictions were favorably compared with the experimental results including the undrained creep rupture, which is an important observed phenomenon for cohesive soils. Despite the simplicity of the constitutive model, it performs well as long as the time to failure ratio of the creep rupture tests is within the same order of magnitude.

Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel

  • Kashkoli, Mosayeb Davoudi;Tahan, Khosro Naderan;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.701-715
    • /
    • 2019
  • Using first-order shear deformation theory (FSDT), a semi-analytical solution is employed to analyze creep damage and remaining life assessment of 304L austenitic stainless steel thick (304L ASS) cylindrical pressure vessels with variable thickness subjected to the temperature gradient and internal non-uniform pressure. Damages are obtained in thick cylinder using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The thermo-elastic creep response of the material is described by Norton's law. The novelty of the present work is that it seeks to investigate creep damage and life assessment of the vessels with variable thickness made of 304L ASS using LMP based on first-order shear deformation theory. A numerical solution using finite element method (FEM) is also presented and good agreement is found. It is shown that temperature gradient and non-uniform pressure have significant influences on the creep damages and remaining life of the vessel.

Application of the Critical State Theory to Multi-Dimensional Consolidation Analysis (다차원 압밀해석을 위한 한계상태이른의 적용)

  • 정진섭
    • Geotechnical Engineering
    • /
    • v.3 no.4
    • /
    • pp.7-20
    • /
    • 1987
  • This study was performed to investigate the effect of time-dependent creep on the deformation analysis of multi-dimensional consolidation using the finite element method for young Sedimentary clay. It was assumed that the creep in the clay had occured during consolidation. In the analysis, the Modified cam-clay theory originated from the critical state theory was used as the constitutive equation, in which a term equivalent to the creep was supplemnted. The results of the analysis were in good agreement with the observed values in the field.

  • PDF

Comparison of MCC and SSC Models Based on Numerical Analysis of Consolidation Test (압밀시험의 수치해석에 의한 MCC 모델과 SSC 모델 비교)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • In order to integrate two consolidation theories of Terzaghi's consolidation theory and Mesri's secondary compression theory and to identify a model suitable for analyzing stress-strain behavior over time, numerical analysis on consolidation tests were conducted using a modified cam-clay model and a soft soil creep model and the following conclusions were obtained. The results of numerical analysis applying the theory that a linear proportional relationship is established between the void ratio at logarithmic scale and the permeability coefficient at logarithmic scale is better agreement with the result of oedometer test than the results of applying constant hydraulic conductivity. The modified cam-clay model is a model that does not include secondary compression, but the slope of the normal consolidation line corresponding to the compression index of the standard consolidation test includes secondary compression, so the actual settlement curve over time is lower than the predicted value through numerical analysis. It always gets smaller. Other previous studies that applied Terzaghi's consolidation theory to consolidation test analysis showed the same results and were cross-confirmed. The soft soil creep model, which includes secondary compression in the theory, showed good agreement in all sections including secondary compression in the consolidation test results. It was judged appropriate to use a soft soil creep model when performing numerical analysis of soft clay ground.

Creep analysis of a rotating functionally graded simple blade: steady state analysis

  • Mirzaei, Manouchehr Mohammad Hosseini;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.463-472
    • /
    • 2019
  • Initial thermo-elastic and steady state creep deformation of a rotating functionally graded simple blade is studied using first-order shear deformation theory. A variable thickness model for cantilever beam has been considered. The blade geometry and loading are defined as functions of length so that one can define his own blade profile and loading using any arbitrary function. The blade is subjected to a transverse distributed load, an inertia body force due to rotation and a distributed temperature field due to a thermal gradient between the tip and the root. All mechanical and thermal properties except Poisson's ratio are assumed to be longitudinally variable based on the volume fraction of reinforcement. The creep behaviour is modelled by Norton's law. Considering creep strains in stress strain relation, Prandtl-Reuss relations, Norton' law and effective stress relation differential equation in term of effective creep strain is established. This differential equation is solved numerically. By effective creep strain, steady state stresses and deflections are obtained. It is concluded that reinforcement particle size and form of distribution of reinforcement has significant effect on the steady state creep behavior of the blade.

A Rheological Approach on the Predicting of Concrete Creep (유변학을 이용한 콘크리트 크리프 거동 예측)

  • Kwon, Ki-Yeon;Min, Kyung-Hwan;Kim, Yul-Hui;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.697-700
    • /
    • 2008
  • The object of this paper is to propose a logical prediction model of a concrete creep using rheology. Rheology is the study on the flow and stress relationship of matter under the influence of an applied stress. It is also estimated as an effective theory to describe concrete long-term deformations. According to a time dependency and a mechanism of occurrence, the proposed creep model was divided into four components, such as an elastic deformation, a long-term creep, a time dependent short-term creep and a time independent short-term creep. Evaluation on an actual creep deformation pattern by time passage confirmed these classification. In order to approve a rationality of the proposed model, most coefficients of each components were derived by the microprestresssolidification theory and design codes. Numerical approaches were also used when it was restricted within narrow limits. Finally, the proposed rheolgical model was verified by actual creep test results and compared with common methods.

  • PDF