• 제목/요약/키워드: Creep Rate

검색결과 327건 처리시간 0.022초

산화피막의 파괴거동 및 산화피막이 소지금속의 기계적 강도에 미치는 영향 (Fracture Behavior of Oxide Scales and Influence of Oxide Scales on the Strength of Materials)

  • 손일령;최진원
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.72-77
    • /
    • 2004
  • An Fe-25Cr steel was oxidized in Ar atmosphere at 973K with and without applying external stress of 30∼35 MPa. A 0.1$\mu\textrm{m}$ thick $Cr_2O_3$ scales formed during pre-treatment in Ar atmosphere. Initiation of cracking on the oxide scales took place at grain boundaries during the end of second creep stage, in which cracks were found nearly perpendicular to the tensile directions. On the contrary, a scale developed in $N_2$-0.1%$SO_2$ displaced a poor adherence on the metal substrate. In this sample, a fast grown of scales was observed during creep deformation, and the strength of materials was much lower than in Ar. The creep strain rate of $1.5{\times}10^{-7}/s$ and $5.8{\times}10^{-7}/s$ was determined in Ar and in $N_2$-0.1%$SO_2$ under 30MPa, respectively.

가전제품용 경첩의 신뢰성 추정 (Reliability Estimation of Door Hinge for Home Appliances)

  • 문지섭;김진우;이재국;이희진;신재철;김명수
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2004년도 정기학술대회
    • /
    • pp.303-311
    • /
    • 2004
  • This paper presents the reliability estimation of door hinge for home appliances, which consists of bushing and shaft. The predominant failure mechanism of bushing made of polyoxymethylene(POM) is brittle fracture due to decrease of strength caused by voids existing, and that of shaft made of acrylonitrile-butadiene-styrene(ABS) is creep due to plastic deformation caused by excessive temperature and lowering of glass transition temperature by absorbed moisture. Since the brittle fracture of bushing is overstress failure mechanism, the load-strength interference model is used to estimate the failure rate of it along with failure analysis. By the way, the creep of shaft is wearout failure mechanism, and an accelerated life test is then planned and implemented to estimate its lifetime. Through the technical review about failure mechanism, temperature and humidity are selected as accelerating variables. Assuming Weibull lifetime distribution and Eyring model, the life-stress relationship and acceleration factor, B$_{10}$ life and its lower bound with 90% confidence at worst case use condition are estimated by analyzing the accelerated life test data.a.

  • PDF

Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation

  • Wang, Hao;Qi, Xiaohui
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.561-573
    • /
    • 2020
  • The creep and consolidation behaviors of clays subjected to thermal cycles are of fundamental importance in the application of energy geostructures. This study aims to numerically investigate the physical mechanisms for the temperature-triggered volume change of saturated clays. A recently developed thermodynamic framework is used to derive the thermo-mechanical constitutive model for clays. Based on the model, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) code is developed. Comparison with experimental observations shows that the proposed FE code can well reproduce the irreversible thermal contraction of normally consolidated and lightly overconsolidated clays, as well as the thermal expansion of heavily overconsolidated clays under drained heating. Simulations reveal that excess pore pressure may accumulate in clay samples under triaxial drained conditions due to low permeability and high heating rate, resulting in thermally induced primary consolidation. Results show that four major mechanisms contribute to the thermal volume change of clays: (i) the principle of thermal expansion, (ii) the decrease of effective stress due to the accumulation of excess pore pressure, (iii) the thermal creep, and (iv) the thermally induced primary consolidation. The former two mechanisms mainly contribute to the thermal expansion of heavily overconsolidated clays, whereas the latter two contribute to the noticeable thermal contraction of normally consolidated and lightly overconsolidated clays. Consideration of the four physical mechanisms is important for the settlement prediction of energy geostructures, especially in soft soils.

THERMALHYDRAULIC EVALUATIONS FOR A CANFLEX BUNDLE WITH NATURAL OR RECYCLED URANIUM FUEL IN THE UNCREPT AND CREPT CHANNELS OF A CANDU-6 REACTOR

  • Jun, Ji-Su
    • Nuclear Engineering and Technology
    • /
    • 제37권5호
    • /
    • pp.479-490
    • /
    • 2005
  • The thermalhydraulic performance of a CANDU-6 reactor loaded with various CANFLEX fuel bundles is evaluated by the NUCIRC code, which is incorporated with recent models of pressure drop and critical heat flux (CHF) predictions based on high-pressure steam-water tests for the CANFLEX bundle as well as a 37-element bundle. The distributions of channel flow rate, channel exit quality, critical channel power (CCP), and critical power ratio (CPR) for the CANFLEX bundles (with natural or recycled uranium fuel) in the CANDU-6 reactor fuel channel are calculated by the code. The effects of axial and radial heat flux on CCP are evaluated by assuming that the recycled uranium fuel (CANFLEX-RU) has the same geometric data as the natural uranium fuel bundle (CANFLEX-NU), but a different power distribution due to different fuel composition and refueling scheme. In addition, the effects of pressure tube creep and bearing-pad height are examined by comparing various results of uncrept, and $3.3\%\;and\;5.1\%$ crept channels loaded with CANFLEX bundles with 1.4 mm or 1.7 mm high bearing-pads with those of the 37-element bundle. The distributions of the channel flow rate and CCP for the CANFLEX-NU or -RU bundle show a typical trend for a CANDU-6 reactor channel, and the CPRs are maintained above at least 1.444 (NU) or 1.455 (RU) in the uncrept channel. The enhanced CHF of the CANFLEX bundle (particularly with 1.7mm height bearing-pads) produces a higher thermal margin and considerably less sensitivity to CCP reduction due to the pressure tube creep than the 37-element bundle. The CCP enhancement due to the raised bearing-pads is estimated to be about $3\%\~5\%$ for the CANFLEX-NU and $2\%\~6\%$ for the CANFLEX-RU bundle, respectively.

Analysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system

  • Chen, Zhenmu;Kim, Joo-Cheong;Im, Myeong-Hwan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1244-1250
    • /
    • 2014
  • The temperature of the main engine cabin of commercial vessel is very high. The material SS-316L undergoes creep damage at temperatures exceeding $450^{\circ}C$. It is essential to maintain the highly stressed engine cabin below the creep regime. Hence, seawater is employed in this kind of maritime vehicles as cooling liquid. It obtains the thermal energy at the cooling pipe line after passing through main engine cooling system. To harness the energy in the seawater, a turbine can be installed to absorb the energy in the seawater before being released into the sea. In this study, a cooling pipe line is selected to apply the tubular type hydro turbine for transferring the energy. Numerical analysis for investigating the performance and the internal flow characteristics of the tubular turbine is conducted. The results show that the maximum efficiency of 85.8% is achieved although the efficiency drops rapidly at partial flow rate condition. The efficiency descends slowly at the condition of excess flow rate. There is a relatively wide operating range of flow rate of this turbine to keep high efficiency at the excess flow rate condition. For the internal flow of the turbine, there is uniform streamline on the suction and pressure sides of the blade at the design point. However, the secondary flow appears at the suction and pressure sidesat the excess flow rate.In addition, it appears only at pressure side at the partial flow rate condition.

대구지역 셰일의 크리프 특성 (The Creep Behavior of Shale in Daegu Area)

  • 김영수;정성관;차주석;방인호
    • 터널과지하공간
    • /
    • 제13권2호
    • /
    • pp.100-107
    • /
    • 2003
  • 본 암석에 외력을 가하면 내부 응력이 발생하고, 이로 인해 변형이 발생하게 된다. 암석재료에서 크리프 변형이 장기간 지속되어 어느 한계에 도달하면 급작스런 파괴로 이어진다. 따라서 구조물의 장기적 안정성 검토 시에 지반의 크리프 특성 파악이 필수적이라 할 수 있다. 본 논문에서는 일축압축강도의 40% 50%, 60%, 70%에 해당하는 하중을 가하여 변형률을 측정하였다. 크리프 특성을 비교 . 분석한 결과로써 변형률 속도의 경우 하중 이 증가함에 따라 변형률 속도 상수$\alpha$ , ${\gamma}$ 도 증가하는 경향이 나타났다. 크리프 곡선에서 Griggs가 제안한 식이 Li와Xia, Singh식 보다 적합하였으며, Burger's model을 적용하여 구한상수 G$_2$는 응력수준의 증가에 파라 감소하며, η$_1$$_2$, G$_1$의 경우 불규칙하게 나타났다.

과압밀 및 정규압밀영역의 응력상태에 따른 부산점토 장기압밀특성 (Long-term Consolidation Characteristics of Busan Clay considering OC or NC States)

  • 김윤태;조상찬
    • 한국해양공학회지
    • /
    • 제25권6호
    • /
    • pp.110-115
    • /
    • 2011
  • Numerouslong-term consolidation and secondary compression settlements may occur in Busan clay, which is astructured soft clay and consists of a thick clay deposit. As a surcharge load is applied to soils, soils experience different stress paths with depth. Therefore, it is necessary to study the long-term consolidation behavior of Busan clay considering stress conditions such as OC or NC states. In this study, a series of long-term consolidation tests were performed to investigate the consolidation characteristics of Busan clay for 20 days. The undisturbed clay samples were taken from 3 sites located in the Nakdong River estuary. The results showed that the creep rate of the Busan clay gradually decreased with time, which indicated that the secondary compression settlement decreased with time. In addition, the experimental results for 3 samples showed that the ratios were about 0.0363 and 0.051, respectively.

Microstructural Study of Creep-Fatigue Crack Propagation for Sn-3.0Ag-0.5Cu Lead-Free Solder

  • Woo, Tae-Wuk;Sakane, Masao;Kobayashi, Kaoru;Park, Hyun-Chul;Kim, Kwang-Soo
    • 마이크로전자및패키징학회지
    • /
    • 제17권3호
    • /
    • pp.33-41
    • /
    • 2010
  • Crack propagation mechanisms of Sn-3.0Ag-0.5Cu solder were studied in strain controlled push-pull creepfatigue conditions using the fast-fast (pp) and the slow-fast (cp) strain waveforms at 313 K. Transgranular cracking was found in the pp strain waveform which led to the cycle-dominant crack propagation and intergranular cracking in the cp strain waveform that led to the time-dominant crack propagation. The time-dominant crack propagation rate was faster than the cycle-dominant crack propagation rate when compared with J-integral range which resulted from the creep damage at the crack tip in the cp strain waveform. Clear recrystallization around the crack was found in the pp and the cp strain waveforms, but the recrystallized grain size in the cp strain waveform was smaller than that in the pp strain waveform. The cycle-dominant crack propagated in the normal direction to the specimen axis macroscopically, but the time-dominant crack propagated in the shear direction which was discussed in relation with shear micro cracks formed at the crack tip.

Grade 91 강의 고온 균열진전 실험 결과와 설계 물성치의 비교 (Comparison of Crack Growth Test Results at Elevated Temperature and Design Code Material Properties for Grade 91 Steel)

  • 이형연;김우곤;김낙현
    • 대한기계학회논문집A
    • /
    • 제39권1호
    • /
    • pp.27-35
    • /
    • 2015
  • 본 연구에서는 피로 하중 및 크리프 하중을 받는 Mod.9Cr-1Mo (ASME Grade 91)강 시편에 대한 일련의 실험결과로부터 재료물성치인 고온 균열진전 모델을 개발하였다. 이 균열진전 모델은 크리프-피로하중을 받는 균열체의 결함평가에 사용되는 물성치이다. 한국원자력연구원이 수행한 일련의 피로 균열진전(FCG) 속도 실험 및 크리프 균열진전(CCG) 속도 실험 결과로부터 균열진전 모델을 결정하고, 이를 프랑스의 고온 설계 기술기준인 RCC-MRx 와 비교함으로써 설계 물성치의 보수성에 대해 검토하였다. RCC-MRx 는 FCG 모델 및 CCG 모델을 Section III Tome 6 에서 제공하고 있는데, 실험으로부터 결정한 균열진전 모델과 비교한 결과 RCC-MRx 의 FCG 모델은 보수적인 것으로 나타난 반면 CCG 모델은 비보수적인 것으로 나타나 동 물성치에 대한 검증이 필요한 것으로 나타났다. 또한 본 연구에서는 기계적 강도 및 크리프 시험결과에 대해서도 RCC-MRx 의 물성치와 비교 및 분석하였다.

계측 자료의 비선형최소자승법을 이용한 파괴시간 예측 (Failure Time Prediction by Nonlinear Least Square Method with Deformation Data)

  • 윤용균;김병철;조영도
    • 터널과지하공간
    • /
    • 제19권6호
    • /
    • pp.558-566
    • /
    • 2009
  • 암석의 시간 의존적 거동은 기본적인 역학적 특성으로서 시간 의존적으로 거동을 분석하여 암반구조물의 파괴시간을 예측하는 것은 매우 중요하다. Voight가 제안한 재료 파괴 예측식($\ddot{\Omega}=A\dot{\Omega}^\alpha$, 여기서 $\Omega$는 변형률이나 변위와 같은 측정 가능한 물리량이고 A & $\alpha$는 상수이다)을 이용하여 터널, 사면 및 실내 크리프 시험으로부터 측정된 변위나 변형률로부터 파괴시간을 예측하고자 하였다. Voight식을 1차 및 2차 적분하여 구한 변위속도 및 변위식에 비선형최소자승법을 적용하여 A & $\alpha$를 구하였으며 이들 상수는 파괴시간을 예측하는데 사용되었다. 예측된 파괴시간은 실제 파괴시간과 잘 일치하는 것으로 나타났다. 크리프 변형률과 변형률속도에 선형역속도법을 적용하여 구한 예측 파괴시간은 변형률과 변형률속도를 이용하여 구한 파괴시간보다 오차가 큰 것으로 나타났다.