• Title/Summary/Keyword: Creep

Search Result 1,893, Processing Time 0.19 seconds

RHEOLOGICAL PROPERTIES OF OIL/WATER EMULSION AND OIL/LIQUID CRYSTAL/WATER SYSTEMS AND THEIR CONSUMER PERCEPTION IN HAIR CARE PRODUCTS

  • Kim, Chong-Youp;Hong, Jong-Eoun;Kim, Su-Hyun;Kang, Hak-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.123-131
    • /
    • 1999
  • Liquid crystal known as a rheological barrier to coalescence of oil droplets, increases emulsion stability, water-holding capacity and promotes active material penetration to skin. Some investigation for its rheological characteristics have been reported but its relations to consumer perception have been rarely published. In this study, oil/water emulsion and oil/liquid crystal/water systems were manufactured using the same composition or Behenyltrimethylammonium chloride/Cetostearyl alcohol/Lanolin oil. and rheological properties or each system were investigated with Cone and Plate rheometer. The formation of liquid crystalline phase was observed with polarized microscope and Differential Scanning Calorimeter. Continuous shear experiment, creep, yield and water holding capacity were measured for oil/water and oil/liquid crystal/water systems. The results were compared with sensory evaluations. Oil/liquid crystal/water system showed higher,viscosity at the same shear rate. higher viscoelasticity and higher yield stress than oil/water system. These properties were expected to show good spreadability and excellent richness without waxiness in hair can: products of creme type. This expectation was consistent with the results of sensory experiments. Water-holding capacity was evaluated by measuring residual water of specimens at specific temperature and relative humidity. Oil/liquid crystal/water system was proved to have higher ability to hold water in comparison with oil/water system. The results indicated that oil/liquid crystal/water system was of benefit to rheological properties creme type hair care products.

  • PDF

Mechanical and Thermal Analysis of Oxide Fuel Rods

  • Ilsoon Hwang;Lee, Byungho;Lee, Changkun
    • Nuclear Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.223-236
    • /
    • 1977
  • An integral computer code has been developed for a mechanical and thermal design and performance analysis of an oxide fuel rod in a pressurized water reactor. The code designated as FROD 1.0 takes into account the phenomena of radial power depression within the pellet, cracking, densification and swelling of the pellet, fission gas release, clad creep, pellet-clad contact, heat transfer to coolant and buildup of corrosion layers on the clad surface. The FROD 1.0 code yields two-dimensional temperature distributions, dimensional changes, stresses, and internal pressure of a fuel rod as a function of irradiation time within a reasonable computation time. The code may also be used for the analyses of oxide fuel rods in other thermal reactors. As an application of FROD 1.0 the behavior of fuel rod loaded in the first core of Go-ri Nuclear Power Plant Unit 1 is predicted for the two power histories corresponding to steady state operation and Codition II of the ANS Classification. The results are compared with the design criteria described in the Final Safety Analysis Report and a discrepancy between these two values is discussed herein.

  • PDF

The Silicon Type Load Cell with SUS630 Diaphragm (SUS630 다이아프램을 이용한 반도체식 로드셀)

  • Moon, Young-Soon;Lee, Seon-Gil;Ryu, Sang-Hyuk;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.213-218
    • /
    • 2011
  • The load cell is a force sensor and a transducer that is used to convert a physical force into a electrical signal for weighing equipment. Most conventional load cells are widely used a metal foil strain gauge for sensing element when force being applied spring element in order to converts the deformation to electrical signals. The sensitivity of a load cell is limited by its low gauge factor, hysteresis and creep. But silicon-based sensors perform with higher reliability. This paper presents the basic design and development of the silicon type load cell with an SUS630 diaphragm. The load cell consists of two parts the silicon strain gauge and the SUS630 structure with diaphragm. Structure analysis of load cell was researched by theory to optimize the load cell diaphragm design and to determine the position of peizoresistors on a silicon strain gauge. The piezo-resistors are integrated in the four points of silicon strain gauge processed by ion implantation. The thickness of the silicon strain gauge was polished by CMP under 100 ${\mu}M$. The 10 mm diameter SUS630 diaphragm was designed for loads up to 10 kg with 300 ${\mu}M$ of diaphragm thickness. The load cell was successfully tested, the variation of ${\Delta}$R(%) of four points on the silicon strain gauge is good linearity properties and sensitivity.

A Viscoplastic Constitutive Model Based on Overstress Concept with Time-Temperature Superposition Principle (시간-온도 중첩이론을 적용한 아스팔트 바인더의 점소성 구성 모형)

  • Yun, Tae-Young;Ohm, Byung-Sik;Yoo, Pyeong-Jun;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.75-83
    • /
    • 2012
  • PURPOSES: Suggestion of asphalt binder constitutive model based on time-temperature superposition principle and overstress concept in order to describe behavior of asphalt binders. METHODS: A series of temperature sweep tests and multiple stress creep and recovery(MSCR) tests are performed to verify the applicability of time-temperature superposition principle(t-Ts) and to develop viscoelastoplastic constitutive equation based on overstress concept. For the tests, temperature sweep tests at various high temperature and various frequency and MSCR test at $58^{\circ}C$, $64^{\circ}C$ $70^{\circ}C$, $76^{\circ}C$, and $82^{\circ}C$ are performed. From the temperature sweep tests, dynamic shear modulus mastercurve and time-temperature shift function are built and the shift function and MSCR at $58^{\circ}C$ are utilized to determine model coefficients of VBO model. RESULTS: It is observed that the time-temperature shift function built at low strain level of 0.1% is applicable not only to 1.0% strain level temperature sweep test but also maximum 500,00% strain level of MSCR test. As well, the modified VBO model shows perfect prediction on MSCR measured strain at the other temperatures. CONCLUSIONS: The Time-temperature superposition principle stands hold from very low strain level to very high strain level and that the modified VBO model can be applicable for various range of strain and temperature region to predict elastic, viscoelastic, and viscoplastic strain of asphalt binders.

Shear and Bond Strength of Activated Hwangtoh Concrete Beam (활성 황토 콘크리트 보의 전단 및 부착 강도)

  • Lee, Nam-Kon;Park, Hong-Gun;Hwang, Hye-Zoo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.685-694
    • /
    • 2010
  • As a eco-friendly material, Hwangtoh (red clay) has been studied for complete or partial replacement of portland cement. Most of existing studies focused on the material properties of the Hwangtoh concrete including the compressive strength, drying shringkage, and creep. In the present study, the shear strength of the beams made with the Hwangtoh concrete was tested. Further, bond strength of tension re-bars embedded in the Hwangtoh concrete was tested. One of the concrete tested consisted of activated Hwangtoh replacing 20% of the cement. The other consisted 100% activated. Hwangtoh replacing all the cement. The beam specimens were tested under two point static loading. The test result showed that the shear strength of activated Hwangtoh concrete beams replacing 20% and 100% of cement was equivalent to that of the ordinary portland cement concrete beam. However, the bond strength of activated Hwangtoh concrete replacing 100% of the cement was less than that of the ordinary portland cement concrete.

An Experimental Study on the Modelling for the Prediction of the Behaviour of EPS (EPS의 거동 예측 모델에 관한 실험적 연구)

  • 천병식;임해식
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.127-136
    • /
    • 1996
  • Recently, EPS which has unit weight of only 20~30kg/m3, is used for acquiring the safety of settlement and bearing capacity, In Korea, EPS was first used in 1993 as backfill material for abutment that was constructed on soft ground in Inchon. Since then EPS has been used increasingly as backfill material. However, adequate modelling has not yet been proposed for the prediction of the behavior of EPS. Only it's design strength was proposed as the results of unconfined strength and creep test. Accordingly this paper executed triaxial compression test on EPS with various density and confining pressure. Through the analysis of test data the behavior of EPS for strainstress, tangential modulus and poisson's ratio can be expressed in functions with parameters of density and confining pressure of EPS. From these results, this paper proposed a nonliner model describing the behavior of EPS.

  • PDF

A Study on Engineering Characteristics of Load Reducing Material EPS (도로성토하중경감재 EPS의 공학적 특성에 관한 연구)

  • Jang, Myeong-Sun;Cheon, Byeong-Sik;Im, Hae-Sik
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-70
    • /
    • 1996
  • The EPS has the unit weight of only 20~30kg/m3 and is used as one of the methods of reducing road embankment loads. Parts of it's applications are for backfill materials of structures like abutment, retaining wall, etc., to reduce horizontal earth pressure and for banking materials to secure the safety of settlement and bearing capacity by minimizing the stress Increment. However, the Korean Standards (KS) has not yet proposed any testing method for use of EPS as a engineering banking material. Only its testing and quality ordinance as a heat insulation material has been standardized. Therefore, in Korea, EPS is used as banking material without any systematic testing data as a civil engineering material. In this point of view, this paper deals with the engineering characteristics of EPS through many laboratory tests on strength, strain, absorption, and creep. from the results achived through tests, this paper proposes the enactment of a suitable quality testing ordinance and the criteria of unconfined design strength of EPS for use as engineering material.

  • PDF

Development and Verification of High Efficiency Experimental Apparatus to Evaluate Freezing Phenomenon of Soils (고효율 실내 동결실험장비의 개발 및 성능검증)

  • Choi, Chang-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.93-103
    • /
    • 2011
  • In order to design suitable geo-structures in cold region, it is generally required to consider the mechanical properties of permafrost soils. 'Frost heave' as one of the primary phenomenon is considered to be an important factor together with 'adfreeze bond-strength' and 'creep deformation' for structural design process in permafrost area. Therefore, the fundamental study for frost heave has to be preceded for design of geo-structures in cold region. While various experimental apparatuses have been developed, there still exist a certain level of limitation to evaluate the frost-heave characteristics as design parameters. In this paper, a new type of experimental apparatus is proposed to evaluate the engineering characteristics of frost heave in permafrost soils and a set of verification test results is presented. Based on the verification tests, the proposed apparatus is a suitable to obtain frost characteristics of soils.

Program Development for Material Degradation Evaluation Using Grain Boundary Etching Method (입계부식법을 이용한 열화도 평가 프로그램 개발)

  • Yu, Hyo-Seon;Baek, Seung-Se;Na, Seong-Hun;Kim, Jeong-Gi;Lee, Hae-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1064-1072
    • /
    • 2001
  • It is very important to evaluate material degradation like temper and carbide embrittlements to secure the reliable and efficient operational conditions and to prevent brittle failure in service. The extent of material deterioration can be accurately evaluated by mechanical test such as impact test or creep test. But it is almost impossible to sample a large specimen from in-service plants. Thus, the material degradation evaluation by a non-destructive method is earnestly required. Recently the non-destructive test technique which uses the grain boundary etching characteristics owing to the variation of material structures has been proposed. However the program for material degradation evaluation using the grain boundary etching method(GEM) in Windows 98 domain doesnt be developed now. The aims of this paper are to develop the program and to complete the new master curve equations for the evaluation of material degradation on in-serviced high temperature components.

Development of User Subroutine Program Considering Effect of Neutron Irradiation on Mechanical Material Behavior of Austenitic Stainless Steels (중성자 조사에 따른 오스테나이트 스테인리스 강의 기계적 재료거동 변화를 고려한 사용자 정의 보조 프로그램 개발)

  • Kim, Jong Sung;Jhung, Myung Jo;Park, Jeong Soon;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1127-1132
    • /
    • 2013
  • The failure of reactor internals may have a significant effect on the safe operation and shutdown of a reactor. Various agings related to neutron irradiation occur or can potentially occur in the reactor internals owing to high neutron irradiation levels. Austenitic stainless steel, one of the principal materials constituting the reactor internals, shows different mechanical material behaviors such as tensile/creep properties and fracture toughness with neutron irradiation levels. This variation should be considered when the structural integrity of the reactor internals against agings during the design lifetime or continued operation period is evaluated. In this study, user subroutine programs considering the variation of mechanical material behaviors with neutron irradiation levels were developed. The programs were validated by testing them for various conditions.