• Title/Summary/Keyword: Crater Shape

Search Result 37, Processing Time 0.025 seconds

A study on the arc discharge characteristics of liquid insulating materials for electrical discharge machine (방전가공기용 액체 절연재료의 아크 방전 특성 연구)

  • 김상현;김해종;마대영;신태민
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.564-571
    • /
    • 1995
  • This paper deals with the arc discharge characteristics of kerosene oil as a basic study on electrical discharge machine. Using needle electrode the discharge voltage, discharge current, discharge energy and the shape of discharge crater are measured. In consequence, it becomes clear that the discharge crater(depth, height, diameter) is depending on the discharge energy. Rapid increase in depth, height and diameter of discharge crater was observed during initial discharge, where discharge energy is large. However, rather slow decrease of those values was found when discharge energy is low or N is more than 3. As the ratio of $I_p$$T_on$ increase, the shape of discharge crater gets near circle. The protuberances of the discharge crater were not formed by the melted needle electrode but by the that of work piece.

  • PDF

Crater Wear Volume Calculation and Analysis (크레이터 마모의 체적계산 및 분석법)

  • Jeong, Jin-Seok;Cho, Hee-Geun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.248-254
    • /
    • 2009
  • The worn crater wear geometry of coated tools after machining has been configured by using Confocal Laser Scanning Microscopy(CLSM) and the Wavelet-based filtering technique. The CLSM can be well suited to construct the three-dimensional crater wear on the rake surfaces of coated tips. However, The raw heightness data of HEI(height encoded image) acquired by CLSM must be filtered due to the electronic and imaging noise occurring in constructing the crater image. So the Wavelet-based filtering algorithm is necessary to denoise the shape features in a micro scales so as to realize accurate crater wear topography analysis. The crater wear patterns filtered enable us to predict the crater wear shape in order to study the tool wear evolution. The study shows that the technique by combining the CLSM and Wavelet-based filtering is an excellent one to obtain the geometries of worn tool rake surfaces over a wide range of surface resolution in a micro scale.

  • PDF

The Characteristics of Continuous Waveshape Control for the Suppression of Defects in the Fiber Laser Welding of Pure Titanium Sheet (I) - The Effect According to Applying Slope Up & Down - (순 티타늄 박판의 파이버 레이저 용접시 결함 억제를 위한 연속의 출력 파형제어 특성(I) - 슬롭 업 & 다운 적용에 따른 영향 -)

  • Kim, Jong-Do;Kim, Ji-Sung
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.62-68
    • /
    • 2016
  • Laser welding has superior characteristic such as low distortion, high welding speed, easy automation and real time control. But it is easy to occur weld defects such as porosity, crater, humping bead in the area of welding start and end. These weld defects can be suppressed by applying the wave shape control. In this study CW fiber laser was used for welding of $0.5mm^t$ pure titanium. Penetration properties were evaluated with the time of slope up and down. After then the bead shape was observed, and the maximum depth and the area of crater were measured. The bead shape of welding start area changed to be sharp with increase of slope up time and non-weld area of welding start increased. The crater and humping bead were suppressed with slope down time. The cooling rate of crater area was understood through measure of the hardness. Also, The distribution tendency of alloying elements was observed by EPMA and EDS. When wave shape control didn't applied to weld, the hardness of end weld increased due to rapid cooling rate and the hardness of rear part in the crater was higher than that of fore part. On the other hand, when the wave shape control was used for end weld, the increase of hardness in the end weld couldn't be found due to gradual cooling rate.

A Basic Study on Electrical Discharge Machining (방전 가공의 기초적 연구)

  • 김해종;마대영;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.42-45
    • /
    • 1994
  • In this paper, we will report on the effect of the pointed end shape of an electrode, discharge energy, pulse width and discharge current on machining characteristics. The results obtained are as tollows: 1)As the discharge Energy increases, the diameter and the depth of the discharged crater becomes larger and deeper. 2) The discharge energy is not constant during discharge but varies depending on the pointed end shape of th8 electrode. 3) The shape of crater depends on the pulse width and discharge current.

  • PDF

Numerical Simulation of the Electro-discharge Machining Process of a Conductive Anisotropic Composite (전기전도성 이방성 복합재료 방전가공의 수치모사)

  • 안영철;천갑재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.709-712
    • /
    • 2002
  • For the electro-discharge machining of an electro-conductive anisotropic composite, an unsteady state formulation was established and solved by Galerkin's finite element method. The distribution of temperature on work piece, the shape of the crater and the material removal rate were obtained in terms of the process parameters. As the spark was initiated the workpiece immediately started to melt and the heat affected zone was formed. The moving boundary of the crater was also identified with time. When the radial and axial conductivities were increased separately the temperature distribution and the shape of the crater were shifted in the same direction respectively and the material removal rate was found to be higher in the case of increasing radial conductivity rather than the axial conductivity.

  • PDF

Numerical Investigation on Nonequilibrium Energy Transfer in Thin Metal Film Structures during the Irradiation of Femtosecond Pulse Laser (펨토초 레이저가 조사되는 동안의 금속 박막내의 비평형 에너지 전달 현상에 대한 수치해석 연구)

  • Sim, Hyung-Sub;Lee, Seong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.367-373
    • /
    • 2007
  • The present study investigates numerically nonequilibrium energy transfer between electrons and phonons in metal thin films irradiated by ultrashort pulse lasers and it also provides the temporal and spatial variations of electron and phonon temperatures using the well-established two-temperature model(TTM) on the basis of the Boltzmann transport equation(BTE). This article predicts the crater shapes in gold film structures, and compares the results by using two-dimensional energy transport equation. From the results, it is found that nonequilibrium energy transfer between electrons and phonons takes place, and the equilibrium time increases with the increase of laser fluence. On the other hand, above threshold fluence the ablation time doesn't change nearly with increasing fluences. Compared with one-dimensional TTM, it also reveals that the temporal distributions of electron and phonon temperatures at the top surface estimated by using two-dimensional TTM have a similar tendency. The results show that two-dimensional TTM can simulate the crater shape of metals during the irradiation of femtosecond pulse lasers and the absorbed energy is propagated to z-direction faster than to r-direction.

Numerical Analysis of the Electro-discharge Machining Process of a Conductive Anisotropic Composite (전기전도성 이방성 복합재료 방전가공의 수치 해석)

  • Ahn, Young-Cheol;Chun, Kap-Jae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.72-78
    • /
    • 2009
  • For the electro-discharge machining of an electro-conductive anisotropic composite, an unsteady state formulation was established and solved by Galerkin's finite element method. The distribution of temperature on work piece, the shape of the crater and the material removal rate were obtained in terms of the process parameters. The $12{\times}12$ irregular mesh that was chosen as the optimum in the previous analysis was used for computational accuracy and efficiency. A material having the physical properties of alumina/titanium carbide composite was selected and an electricity with power of 51.4 V and current of 7 A was applied, assuming the removal efficiency of 10 % and the thermal anisotropic factors of 2 and 3. As the spark was initiated the workpiece immediately started to melt and the heat affected zone was formed. The moving boundary of the crater was also identified with time. When the radial and axial conductivities were increased separately, the temperature distribution and the shape of the crater were shifted in the radial and axial directions, respectively. The material removal rate was found to be higher when the conductivity was increased in the radial direction rather than in the axial direction.

Fracture Property of Concrete on Spherical and Flat Nose Shape Projectile Impact (반구형과 평탄형 선단 비상체의 충돌을 받는 콘크리트의 파괴특성)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Kim, Hong-Seop;Son, Min-Jae;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.98-105
    • /
    • 2016
  • In this study, projectiles with 2 kinds of nose shape: spherical and flat were impacted into normal concrete and fiber reinforced concrete panels. The fracture depth and form, crater diameter, tensile strain at rear face were evaluated. It was confirmed that smaller projectile nose areas resulted in deeper penetrations associated with concentrated impact forces and small front-face crater diameters in impact test. Conversely, larger projectile nose areas resulted in shallower penetrations and larger front-face fracture diameters. Similar front-face failure and strain distribution relationships based on the projectile nose shape were observed for normal and fiber-reinforced concrete although the rear-face tensile strain and scabbing were significantly reduced by the fiber reinforcement. In addition, a direct relationship was confirmed between the penetration depth based on the projectile nose shape and the tensile strain on the rear face. Thus the impact strain behavior is required to predict the scabbing behavior with penetration depth.

Micro Sampling System for Highly Radioactive Specimen by Laser Ablation (Laser Ablation에 의한 고방사성시편의 미세영역 시료채취 장치개발)

  • Han Sun Ho;Ha Yeong Keong;Han Ki Chul;Park Yang Soon;Jee Kwang Yong;Kim Won Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2005
  • Shielded laser ablation system composed of laser system, image analyser, XYZ translator with motion controller, ablation chamber, manipulator and various optics was designed. Nd:YAG laser which can be tunable from 1064 nm to 266 m was selected as light source. CCD camera(< $\pm$200) was chosen to analyze a crater less than 50 un in diameter. XYZ translator was composed of three linear stage which can travel 50 w with a minimum movement of 1 um and motion controller. Before the performance test, each part of system was optically aligned. To perform the ablation test, the specimen was ablated by 50 um interval and observed by image analyser The shape of crater was almost round, indicating laser beam has homogeneous energy distribution. The resolution and magnification of image system were compatible with the design.

  • PDF

Prediction of the Heat-Affected Zone in the Micro Electric Discharge Machining (미세 방전가공에서의 열영향층 예측)

  • Kim T.G.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.422-425
    • /
    • 2005
  • This study predicts the heat-affected zone (HAZ) after electrical discharge machining. To predict HAZ, the temperature distribution is calculated using FEM. Heat flux is calculated from electrical energy, and it can be assumed Gaussian distribution. Plasma channel expands as time goes. Copper and NAK80 are used as the workpiece material. The depth of HAZ in simulation is determined by temperature distribution. The simulation results were compared with a developed actual single discharge crater. Through investigating the cross section of simulated & actual craters, the depth of HAZ in simulation and experiment are compared. Simulation model can predict the crater shape.

  • PDF