• Title/Summary/Keyword: Crash test

Search Result 323, Processing Time 0.023 seconds

A Study on the Specific Equation of Bending Collapse for Extruded Aluminum Members (알루미늄 압출부재의 굽힘붕괴 특성식 산출에 관한 연구)

  • Kang, Shin-Yoo;Jang, Hye-Jeong
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.131-138
    • /
    • 2000
  • In this paper, we would like to develop the bending collapse specific equation of aluminum members which are usually used in light-weight vehicle or electromobiles. The result of the developed equation are compared with that of test and finite element methods as the moment-rotational angle curves. Three types of aluminum members are tested with the pure bending collapse test rig. PAM-CRASH and ABAQUS program are used for finite element analysis. As the result the developed bending collapse governing equation is accurate in estimating the yield moment and the maximum moment. Especially, in the case of the local buckling and the delayed buckling, the developed equation is better effective than F.E.M.

  • PDF

OPTIMIZATION OF A DRIVER-SIDE AIRBAG USING KRIGING AND TABU SEARCH METHODS (크리깅과 타부탐색법을 이용한 운전석 에어백의 최적설계)

  • Kim, Jeung-Hwan;Lee, Kwom-Hee;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1035-1040
    • /
    • 2004
  • In the proto design stage of a new car, the performance of an occupant protection system is often evaluated by CAE instead of the real test. CAE predicts and recommends the appropriate design values hence reducing the number of the real tests. However, the existing researches using CAE in predicting the performances do not consider the uncertainties of parameters, in which inconsistency between the actual test results and CAE exists. In this research, the optimization procedure of a protection system such as airbag and load limiter is suggested for the frontal collision. The DACE modeling known as Kriging interpolation is introduced to obtain the meta model of the system followed by the tabu search method to determine a global optimum. Finally, the distribution of a suggested design is determined through the Monte-Carlo Simulation.

  • PDF

Strength Analysis of Luggage Intrusion into Recreational Vehicle Seat (RV 차량 시트의 적재물 침입 강도해석)

  • Bae Jinwoo;Kang Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.160-166
    • /
    • 2005
  • In recent, recreational vehicles, which efficiently provide wide inner space for various utilities, are highly preferred in automobile market. Though those vehicles enable to load much luggage in space behind the last seat, in case of frontal impact with high velocity the luggage strongly collides into the seat back and the passengers in. the last seat could be severely injured. Therefore, high strength against luggage intrusion is required for the last seat, and it is regulated by law of ECE R17. In this study, for a recreational vehicle under developing, an analysis technique for simulating seat crash in accordance with luggage intrusion test of ECE R17 was investigated. The results exhibited good correlation with the test ones.

PERFORMANCE EVALUATION OF SNORT IN AN INEXPENSIVE HIGH-AVAILABILITY SYSTEM

  • Kim, Wan-Kyung;Soh, Woo-Young;Jason S. Seril
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.88-92
    • /
    • 2004
  • Most studies in the past in testing and benchmarking on Intrusion Detection System (IDS) were conducted as comparisons, rather than evaluation, on different IDSs. This paper presents the evaluation of the performance of one of the open source IDS, snort, in an inexpensive high availability system configuration. Redundancy and fault tolerance technology are used in deploying such IDS, because of the possible attacks that can make snort exhaust resources, degrade in performance and even crash. Several test data are used in such environment and yielded different results. CPU speed, Disk usage, memory utilization and other resources of the IDS host are also monitored. Test results with the proposed system configuration environment show much better system availability and reliability, especially on security systems.

  • PDF

Injury Study for Q6 and Q10 Child Dummies (Q6, Q10 어린이 인체모형의 상해치 연구)

  • Sun, Hongyul;Lee, Seul;Seok, Juyup;Yoo, Wonjae;Yoon, Ilsung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • The Child Occupant Safety Assessment was first introduced and carried out by Euro NCAP in 2003, with the goal of ensuring manufacturers to develop safe vehicles for passengers of all ages; the objective was to evaluate the safety and protection offered by different Child Restraint Systems (CRS) in the event of a crash. In 2013, the formerly used P child dummy series was replaced by newer and more biofidelic Q1.5 and Q3 child dummies, representing 1.5 and 3 year old children respectively. The frontal and side impact dynamic performances of the Q1.5 and Q3 were tested within all classes of vehicles assessed by Euro NCAP at the time. As an extension to that initiative, Q6 and Q10 child dummies were later developed representing children of 6 and 10 years old. Since the protection of larger children during vehicle crashes relies greatly on the interaction of vehicle restraint systems such as seat belt and the CRS, instrumented Q6 and Q10 dummies will be used to assess the protection offered in the event of front and side impact crashes. In this paper, we focused on injury criteria of Q6 and Q10 child dummies at 64 kph 40% offset frontal crash test. The whole procedure was designed with DFSS analysis. The full vehicle sled test results of both dummies were conducted with different restraint systems settled through previous sled test. It showed that several injury criteria and image data were collected as the result of the full vehicle sled test. Based on the results of these investigations, this paper describes which factor is most important and combination shows the best performance when evaluating rear seat occupant protection for Q6 and Q10 child dummies.

Prediction of Chest Deflection Using Frontal Impact Test Results and Deep Learning Model (정면충돌 시험결과와 딥러닝 모델을 이용한 흉부변형량의 예측)

  • Kwon-Hee Lee;Jaemoon Lim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.1
    • /
    • pp.55-62
    • /
    • 2023
  • In this study, a chest deflection is predicted by introducing a deep learning technique with the results of the frontal impact of the USNCAP conducted for 110 car models from MY2018 to MY2020. The 120 data are divided into training data and test data, and the training data is divided into training data and validation data to determine the hyperparameters. In this process, the deceleration data of each vehicle is averaged in units of 10 ms from crash pulses measured up to 100 ms. The performance of the deep learning model is measured by the indices of the mean squared error and the mean absolute error on the test data. A DNN (Deep Neural Network) model can give different predictions for the same hyperparameter values at every run. Considering this, the mean and standard deviation of the MSE (Mean Squared Error) and the MAE (Mean Absolute Error) are calculated. In addition, the deep learning model performance according to the inclusion of CVW (Curb Vehicle Weight) is also reviewed.

A study on scenario in virtual environment for test about rear-end collision (후방추돌평가 시험을 위한 가상환경 시나리오 개발연구)

  • Baik, Wookyung;Kim, Baeyoung;Kim, Siwoo;Jung, Choongmin;Song, Jongwon;Suh, Myungwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.17-21
    • /
    • 2011
  • Vehicle safety device such as active headrest and rear detection system has been developing as people are interested about rear end collision more than head on or than front. However, there is no any standard or criterion in order to evaluate vehicle safety device for rear end collision. Also there is no test protocol about rear end collision in vehicle experiment. Therefore, this research developed scenario for experiment about rear end collision in vehicle experiment. Also this research evaluated dangerousness about vehicle test and fitness about re-enacting rear end collision using scenario developed using commercial software (PC-Crash) which can re-enact vehicle collision in virtual vehicle experiment. Scenario developed according to statistics from National Highway Traffic Safety Administration and German In-Depth Accident Study. Scenario has twelve cases which composed of Re-LVS (Rear end Leading Vehicle Stop), Re-LVM (Rear end Lead Vehicle Moving) and scenario for evaluation about malfunction of active headrest.

An Experimental Study on Reduction of Gear Rattle Noise for a Mini-bus with Diesel Engine (디젤엔진을 탑재한 소형버스의 기어 래틀 소음 저감에 관한 실험적 연구)

  • Jung, Jong-An;Cho, Chan-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.13-21
    • /
    • 1995
  • On mini-bus with diesel engine, at idle rpm for taking measurement to reduce gear rattle noise, was tested by the three clutch disc samples by turns, then measured the fluctuation of revolution of engine & transmission and parallel vibration of differential gear & transmission. By analyzing the measured data, the gear rattle noise, the matching design and tuning technic of transmission are comprehended and established. Conclusions of this test are as follows ; (1) Fluctuation of revolution on transmission is greatly affected by torsion of clutch disc according to fluctuation of engine revolution transmit to transmission through clutch system. Especially, gear rattle noise can be reduced by minimaizing the fluctuation of the revolution of transmission using pre-damper type clutch disc. (2) The reason of gear rattle noise is higher in summer than winter and driving longer period than initial driving is due to affection by drag torque changing. So, it is necessary for manufacturer to choose proper oil to transmission. (3) It can be occurred jumping and crash noise by applying the pre-damper type clutch disc for reducing the gear rattle noise. So, it is necessary to do test with actual vehicle according to test procedure.

  • PDF

Crashworthy Design and Test of Landing Gear (착륙장치 내추락 설계 및 시험평가)

  • Kim, Tae-Uk;Lee, Sang-Wook;Shin, Jeong-Woo;Lee, Seung-Kyu;Kim, Sung-Chan;Hwang, In-Hee;Jo, Jeong-Jun;Lee, Je-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.601-607
    • /
    • 2012
  • The main function of a landing gear is to absorb the impact energy during touchdown. It it occasionally required for landing gear to have crashworthiness for improving survivability and safety in case of emergency landing. This paper introduces the design concept, performance analysis and drop test procedures for the development of the crashworthy landing gear. The shock absorbing ability and the crash behavior are proved by analyzing various sensor data and video clips from high speed camera recording during drop tests.

Development of an Energy-Absorbing Device for a Crashworthy Sliding Post (감충성능을 갖는 슬라이딩 지주의 에너지흡수장치 개발)

  • Noh, Min-Hyung;Jang, Dae-Young;Lee, Sung-Soo;Han, Ki-Jang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.445-454
    • /
    • 2020
  • Non-breakaway crashworthy sliding posts move rigidly with a vehicle in the early stage of vehicle impact. During this stage, a vehicle imparts its linear momentum to the post, experiencing first-stage speed loss followed by second-stage loss from the crush of the energy-absorbing pipe (EAP) installed under the guide rail. An EAP is the key element of a crashworthy sliding post and should be confined to the post foundation. This paper covers the development of an EAP for a sliding post of 507 kg, which is a sliding post type frequently used in Korea for cantilever signs. Detailed explanations of the designs for an EAP structure using LS-DYNA impact simulation are given, and the crashworthiness of the systems are confirmed through crash tests. The EAP presented in this paper can accommodate impacts from 0.9 ton-60 km/h to 1.3 ton-80 km/h, and is applicable to foundations up to 2.7 m in length.