Proceedings of ISMICS'2004

PERFORMANCE EVALUATION OF SNORT IN AN
INEXPENSIVE HIGH-AVAILABILITY SYSTEM

Wan Kyung Kim*, Woo Young Soh, Jason S. Seril*

Department of Computer Engineering, Graduate School, Hannam University, Korea,
(SSPSC-SSIT Campus, Surigao, Philippine)*
wankkl2@neuro.hannam.ac.kr

Abstract—Most studies in the past in testing and benchmarking on Intrusion Detection System (IDS)

were conducted as comparisons, rather than evaluation, on different IDSs.

This paper presents the evaluation

of the performance of one of the open source IDS, snort, in an inexpensive high availability system configuration.
Redundancy and fault telerance technology are used in deploying such IDS, because of the possible attacks that
can make snort exhaust resources, degrade in performance and even crash. Several test data are used in such

environment and yielded different results.

CPU speed, Disk usage, memory utilization and other resources of

the IDS host are also monitored. Test results with the proposed system configuration environment show much
better system availability and reliability, especially on security systems.

L INTRODUCTION

This paper designs and implements a high availability
system configuration for network intrusion detection
system and benchmarks snort version 2.0 as the subject,
its performance in such environment and how it can be
optimized. This benchmarking is used to gather
empirical results in the form of performance data and
evidence, of both the new system’s effectiveness and
usefulness. The objectives in this paper are to design a
low-cost high availability system configuration for
network intrusion detection system(NIDS) using snort,
to evaluate the system performance to better understand
how much system resources is used by snort in such a
system environment and how snort can be affected by
“stressed” conditions in the computing environment.

One of the objectives of this study is a design of a
fault-tolerant NIDS in a two-node environment. This
framework comprises functionally redundant systems
that provide reliable service despite NIDS failure. Fig.
1 shows the top-level design framework of snort in a
fault tolerant environment.

Internet
Mornitoring /

¢ Heartbeat

oO
Snort NIDSI =‘¢-—> “'
Sensor
Backup Node

1 Top-level Design of Sort NIDS in a high
availability machine

Fig.

As stated in snort[1] is an open source network
intrusion detection system, capable of performing real-

88

El

time traffic analysis and packet logging on IP networks.
Aside from it, snort can perform also protocol analysis
and content searching/matching in order to detect a
variety of attacks and probes, such as buffer overflows,
stealth port scans, CGI attacks, SMB probes, PS finger
printing attempts, and much more. snort has real-time
alerting capability: alerts can be sent to syslog, Server
Message Block, Database, or a separate ‘alert’ file.

snort detection engine relies on rules to detect
intrusions, and it cannot maintain states. Several
preprocessors are infroduced to keep states and deal with
portscan, IP fragments and TCP fragments. These
preprocessors are run before the detection engine is
called and after the packets have been decoded.

Fig. 2 depicts the snort architecture, which has three
principal components,

D preprocessors,
g — l :
E: decoder Detection :
Engine trreeerer
packets Output
alert

Fig. 2 Snort Architecture

In 1999, the U.S. DARPA initiated the latest
evaluation on IDS. It is considered as the most
comprehensive scientific study for comparing the
performance of different IDS. The network data
generated from its private controlled network are used to
evaluate IDS. The data is analyzed off-line to determine
which sessions are normal and which constitute
intrusions. Although this is beyond the scope of the study,
more of these attacks can be found on these {2](3]
conducted.

The most cost-effective approach to increasing one’s
systems reliability is to implement a fail-over
configuration. Fail-over setup involves pooling
together multiple computers, each of which is candidate
server for a file systems, databases or applications.
Each of these systems monitors the health of other
systems in the cluster. In the event of failure in one of

the cluster members, the others take over the services of Attack

the failed node. The takeover is typically performed in
such a way as to make it transparent to the client systems
that are accessing the data.

To have a failsafe intrusion detection system, Linux
High Availability (HA) machine were set-up, using
several open source packages available. Virtually every
UNIX supplier has their own HA software solution to
provide customers with fail-over server systems at
moderate prices or even free of cost. To come up with
such fail-over environment, several HA solutions were
used. Such environment is discussed below.

II. TESTING METHODOLOGY

The experiment described in this paper uses a
simulated network and smort 2.0 network intrusion
detection system. The IDS is evaluated using the
captured sample tcpdump traffic from MIT’s Lincoln
Lab IDS evaluation performed in 1998 [4]. This
sample data contains only simple attacks, which are
included to illustrate how intrusion detection system will
be evaluated. Attacks include instances where a remote
user illegally obtains local user-level privileges or local
root-level privileges on a target machine and instances
where a remote user surveys a potential target for
weaknesses or searches for potential targets. Attacks in
the sample data include the following:

Table 1 Different Attacks in DARPA Sample Test Data

Name Description
Remote user guesses many passwords
Guess to log into a target machine.
. Low level ICMP ping sweep to
ping-sweep identify target machines.
Determine which services on a target
port-scan machine are active.
phf Run Unix command line on a web
server.
Rlogin Rlogin to target machine without a
g assword.
Execute a command on the target
Rsh machine without a password
Remotely copy a file to/from target
Rep machine without a password.

With the sample test data mentioned above, there are
2772 non-intrusive sessions and 39 intrusive sessions.

El

SNORT NIDS Sensor

WinN Linu T
e (virtua
Middler " -
N hub Victim
SNORT Backup Node

High Availability Environment

Fig. 3 Testbed network

Fig. 3 depicts the test bed environment. And to
simulate back the capture data from DARPA, tcpreplay
tool was used. A tool for replaying network traffic from
files saved with tcpdump. Tcpreplay is being played on
the “middleman” computer, and the saved packets were
being sent to snort sensor. Another test involve is
injecting packet onto a test network on which the subject
snort was running. On this test, it engages the TCP
protocol. In some cases, the tests have some interacting
between the injected packets and the third host,
representing a hypothetical “target” of attack. In each
test, this target host was the exploit addressee of the
entire packet injected.

In testing or evaluating snort, sets of performance
objectives were identified first(which are similar to the
design goals cited in [5]):

O Broad Detection Range
] Economy in Resource Usage
O Resilience to Stress

Fail-over Test : Experiments have been performed to
ensure the high availability of snort. Several of these
tests were performed like taking down the primary host,
kill its power, and the eth0 heartbeat cable.

Intrusion Identification Test : Intrusion Identification
Tests that measure the ability of snort IDS to distinguish
known intrusions from normal behavior. Some baseline
tests were carried out first on snort. This test is
discussed on the following pages.

Basic Detection Test : Before conducting complicated
or subtle tests against the subject, the researcher
conducted a series of “baseline” tests. The purpose of
these tests was to ensure that the subject IDS, was
configured properly and was functioning at the time this
tests were conducted and that snort did in fact detect
attacks from the test data.

The researcher employs the sidestep package[6] to
inject attack packets in the testing environment. The
sidestep package is based on MS Windows; it sends
attack at the target that evades an IDS. This package
provides novel attacks such as phf, dns, rpc, fip, and

89

several other attacks. It has three different modes of
attacks to the victim, the normal, evade and the false
alarm attacks.

Economy in Resource Usage : This test is conducted
to measure how much system’s resources are used by
snort IDS. This is to decide if it is practical to run
snort in a particular computing environment, such as in
fail-over environment. To measure such activities of
the host including the nodes, sar (system activity
reporter) tool has been used. This command writes to
standard output the contents of selected cumulative
activity counters in the Linux operating system. The
accounting system, based on the values in the count and
interval parameters, writes information the specified
number of times spaced at the specified intervals in
seconds. Resilience to Stress : One of the performance
objectives of this evaluation is to know whether snort
could still function correctly under stressful conditions in
the system, such as a very high level of computing
activity. Like for instance an attack that snort would
ordinarily detect might go undetected under such
conditions. There are several forms of stress test
conducted on snort. These tests were developed by [5].
One of the stress test being used is the load test. This
investigates the effect of the load on the snort host CPU.
In this testing experiment, the researcher measured the
load of the CPU by using sar command, which again

reports the average number of jobs in the CPU run queue.

This test is conducted in the same way as the other
tests conducted, except that a high load should be
established on snort host during test. A high load can
be created by running additional programs on the snort
host, so that snort program must share CPU time with
the other programs.

III. EXPERIMENTAL RESULTS

Fail-over Test : There were two tests conducted to
check such setup. The results are discussed on the
following sections.

Takeover Test : During testing, few scenarios have
been deployed to check whether high-availability is
attained. One situation was to run the snort, get its
process, kill it and verify whether the back-up node take
over as the sensor. Another condition tested was when
the snort host was shutdown. The results were all as
expected. A crossover cable (eth0) was used for the
monitoring of ones “heart beats”. In the case of the
inter-node/heartbeat network failing, the nodes simply
carried on normal operation and do some alerts. Sensor
Node’s Performance : One of the benchmarks measured
the overall smort host performance including CPU
average load, memory statistics and I/O transfer rate
during the subject IDS snort is running with and without
the backup node. Fig. 4(a&b) visually shows the
average performance of the snort host without and with

90

El

the backup node. And it depicts that the overhead of
the host is not that high.
J— —

an -

aa

<0 |-]

20 - -

At '
"elod 1808 Taito

C€PU UNlization
T

ETY T ———
R =

20 |~

o

q X SNNPVIGN P A P Y .. R
(X 1846 1848 1830 1652 18:34
Tie.

a. without the backup node
b. with the backup node

Fig. 4(a & b) Average Performance of the host with
SNORT running

The results show that the CPU utilization of the snort
sensor node varies when backup node constantly
monitors the ‘“heat beat” of the said sensor. Basic
Detection Test : For this test, the output of snort that are
being logged and saved to the database using the tool
ACID from the “baseline” test conducted, were being
analyzed. As mentioned earlier that with this test, it is
to ensure that snort is properly configured with its plug-
ins, particularly its preprocessors and rules, and to check
if snort reacted to the test by either reporting or not
reporting the sidestep attacks. By considering the
snort’s output and the specific attack packets used for the
test, the researcher was able to deduce significant
characteristics of the said IDS. Resource Usage Test : At
this point, the researcher tested the snort host’s resource
usage. During the actual test using the 1998 DARPA’s
sample data, the total disk space used by snort’s output
through ACID was measured by using the UNIX sar
(system activity reporter) command.

Fig. 5(a&b) shows the graph of the I/O and transfer
rate statistics without the backup node. The
measurement have been made during the running of
sample test data from 1998 DARPA IDS evaluation.
With this report, total number of transfers per second that
were issued to the physical disk was collected. Aside
from this data, the following reports values are displayed.
The total number of read requests per second issued to
the physical disk, as well as the write requests per second
issued to the physical disk are displayed.

Comparing the result in the first environment where
the backup node was disabled, Fig. 5(a&b) shows that
the total amount of data read from the drive in blocks per
seconds change as the backup node continuously checks
the snort sensor node.

VO wansmr rate

VAo LY

a. without the backup node

VO transter rate

—

y

b. with the backup nodT:.
Fig. 5(a&b) Graph of I/O and Transfer Rate Statistics

without the backup node

H
]
T T T T

& Lt
1654

ca sk
18:48 Tose

Stress Test : As discussed in Chapter 4, CPU run
queue of smort host is measured in such stressful
conditions. The researcher hypothesized that such
stress in the form of high load on the snort host might
affect its ability to monitor network connections. Fig.
6(a&b) below visually shows the snort host CPU load,
the average number of jobs in run queue without and
with the backup node.

N

ity =
i i

=

NN T T TR -

a. without the backup node

mun Busss

E T
L kel | ‘ﬁ“ﬁmmm;,J\.Aw‘_,,

b. with the backup node

Nov s

Fig. 6(a&b) SNORT Host jobs in run queue vs. Time

This also reports the run queue length, which is the
number of processes waiting for run time. The number
of processes in the process list, the system load average
for the last minute and the system load average for the
past five (5) minutes were also displayed in the above
graph. Aside from this report, memory activities and
swap space utilization statistics were also measured.
Values of such statistics were taken from sar tool. Fig.
7 shows the graph of the memory activity where backup
node is enabled. First the amount of free memory
available in kilobytes during the test being ran. The
amount of used memory in kilobytes, percentage of used
memory, the amount of free swap space in kilobytes and
several other values are being displayed.

El

— . .

ey - b]

~1000] g T8aw

Fig. 7 SNORT Host Memorm; Activities

TaaE ey 1687 Te8a se

The figures on the next page graphically show the
memory and swap statistics. Fig. 8(a) portrays the
utilization information where the secondary node is
immobilized, and in Figure 8b shows a different data
where the said node (backup) where enabled.

a. without the backup node

** 180000 -

Mamary ang owas
~emory ana Svap

140000

120000

200000

acooo

so000

0000

2aann

Ss55 Telon ez Taloa

b. with the backup node
Fig. 8(a & b) Memory and Swap Space Utilization Statistics

IV. CONCLUSIONS

Evaluating the performance of an NIDS such as snort
in a high availability system configuration is a
challenging task. Several factors have to be considered,
and these factors will change from situation to situation.
As the growth in the use and development of NIDS
continues, such testing techniques are growing in
importance. This paper presented a network environment
of a fail-over network intrusion detection system in a
high availability machine. The results from the study
show the viability of such approach for redundant IDS.
This paper presented an inexpensive high-availability
solution design for the mission-critical needs without
requiring the use of expensive additional hardware or
software. On the whole, this two-node system
configuration environment provides with much better
system availability and reliability, especially on security
systems. It is a vast improvement over the single node,
as it is affordable to do server maintenance.

Future directions of this research would include the
design and implementation of a multi resource high-
availability environment such as redundant database for
the IDS alert logs, file system takeover and others are
also planned to be undertaken as future research.

REFERENCES

[1] Snort’s Documentation, URL: http://www.snort.org

[2] K. Kendall, “A Database of Computer Attacks for
the Evaluation of Intrusion Detection Systems”,
M.Eng. Paper, MIT Department of Electrical
Engineering and Computer Science, June 1999.

91

31

(4]

(5]

(6]

92

K. I. Das, “Attack Development for Intrusion
Detection Evaluation”, M.Eng. Paper, MIT
Department of Electrical Engineering and Computer
Science, June 2000.

Richard Lippman, et. al., “The 1999 DARPA Off-
Line Intrusion Detection Evaluation”, submitted to
Proceedings of 3™ International Workshop on
Recent Advances in Intrusion Detection (RAID
2000).

N. Puketza, et. al., “4 Methodology for Testing
Intrusion Detection System”, Proc. 17® National
Computer Security Conference, October 1994.
http://www.robertgraham.com/tmp/sidestep html

El

