• Title/Summary/Keyword: Crash energy

Search Result 188, Processing Time 0.027 seconds

Design validation of a composite crash absorber energy to an emergency landing

  • Guida, Michele;Marulo, Francesco;Bruno, Massimiliano;Montesarchio, Bruno;Orlando, Salvatore
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.319-334
    • /
    • 2018
  • In this study, the failure mode and energy absorption capabilities of a composite shock absorber device, during an emergency landing are evaluated. The prototype has been installed and tested in laboratory simulating an emergency landing test condition. The crash absorber presents an innovative configuration able to reduce the loads transmitted to a helicopter fuselage during an emergency landing. It consists of a composite tailored tube installed on the landing gear strut. During an emergency landing this crash absorber system should be able to absorb energy through a pre-designed deformation. This solution, compared to an oleo-pneumatic shock absorber, avoids sealing checks, very high values of the shock absorber pressure, and results to be lighter, easy in maintenance, inspect and use. The activities reported in this paper have become an attractive research field both from the scientific viewpoint and the prospect of industrial applications, because they offer benefits in terms of energy absorbing, weight savings, increasing the safety levels, and finally reducing the costs in a global sense.

Weight Reduction of Front Side Member with High Strength Steel (고장력강 적용을 통한 프런트 사이드 멤버의 경량화)

  • 이상곤;최창현;신철수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1487-1490
    • /
    • 2004
  • In this study, the crash analysis was carried out to evaluate the influence of steel sheet grade and thickness on weight reduction and crash characteristics for front side member which had an important role of absorbing the impact energy during front and side impact. In order to achieve the aim of this study the reverse engineering was applied to obtain 3D model of front side member from BIW for the FE simulation. In the result, the crashworthiness of front side member is considerably improved with steel sheet strength and thickness increase. Also, the weight reduction in automotive parts for the improvement of the fuel efficiency can be easily achieved with applying high strength steel without deterioration of crashworthiness.

  • PDF

A Study on Weight Reduction of Front Side Member with Application of High Strength Steel (고강도 강판 적용에 의한 차체 프런트 사이드 멤버의 경량화에 관한 연구)

  • Lee, Sang-Kon;Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.149-155
    • /
    • 2006
  • This paper is concerned with the weight reduction of front side member of a vehicle considering the application of high strength steel sheet. The influence of steel sheet grade and thickness on the energy absorption, impact load and deformed shape of front side member is investigated by using reverse engineering and FE-analysis. The reverse engineering is applied to obtain 3D model of front side member from B.I.W for the FE simulation. FE analysis is carried out with commercial crash analysis SW PAM-CRASH. The crashworthiness of front side member is considerably improved with steel sheet strength and thickness increase. From the result of this study the weight reduction in automotive parts for the improvement of the fuel efficiency can be easily achieved with replacing high strength steel without deterioration of crashworthiness.

Study on the Design of Streeing Wheels for Maximmum Protection of Drivers during Crash (충돌안정성을 고려한 승용차용 조향핸들의 최적설계에 관한 연구)

  • 이윤형;김권희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.130-140
    • /
    • 1999
  • During crash of a vehicle, most of the kinetic energy of the driver is absorbed by the steering system. The deformation characteristics of the steering system has significant effects on the injury of the driver. A part of the energy is absorbed by the steering wheel and another part by the collapsable steering column. It is believed that strength distribution between the wheel and the column has an important effect on the injury of the driver. A design criterion is suggested for steering wheels for maximum protection of drivers. Tagushi method is used to analyse the effects of design parameters.

  • PDF

Study on Analysis of Occupant Safety Index & Behavior Using Full-Scale Crash Test Data of Crash Cushion (충격흡수시설의 실물차량 충돌시험 데이터를 이용한 탑승자 안전도 및 충돌거동 분석에 관한 연구)

  • Joo, Jae Woong;Kum, Ki Jung;Jang, Dae Young;Kim, Bum Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.163-170
    • /
    • 2008
  • According to the rules, a crash cushion is supposed to set up products that is satisfied with the standard of a performance test after performing the car crash test by road safety facilities and management guide. For development of crash cushion, performance should be estimated through the car crash test eventually. However, there is no reasonable design method which considers passenger's safety and only depend on crash test without an alternative plan. Therefore it incurs a loss materially and takes a lot. Therefore, we are asked to create a systematic design of the crash cushion. This study shows that a scientific basis of applying single degree of freedom when it designs the crash cushion after analyzing vehicle crash test data of crash cushion and also represents design of crash cushion through single degree of freedom response spectrum using calculated by crash test data on crash cushion.

SIZE OPTIMIATION OF AN ENGINE ROOM MEMBER FOR CRASHWORTHINESS USING RESPONSE SURFACE METHOD

  • Oh, S.;Ye, B.W.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The frontal crash optimization of an engine room member using the response surface method was studied. The engine room member is composed of the front side member and the sub-frame. The thicknesses of the panels on the front side member and the sub-frame were selected as the design variables. The purpose of the optimization was to reduce the weight of the structure, under the constraint that the objective quantity of crash energy is absorbed. The response surface method was used to approximate the crash behavior in mathematical form for optimization procedure. To research the effect of the regression method, two different methodologies were used in constructing the response surface model, the least square method and the moving least square method. The optimum with the two methods was verified by the simulation result. The precision of the surrogate model affected the optimal design. The moving least square method showed better approximation than the least square method. In addition to the deterministic optimization, the reliability-based design optimization using the response surface method was executed to examine the effect of uncertainties in design variables. The requirement for reliability made the optimal structure be heavier than the result of the deterministic optimization. Compared with the deterministic optimum, the optimal design using the reliability-based design optimization showed higher crash energy absorption and little probability of failure in achieving the objective.

Finite Element Inverse Analysis of an S-rail Forming Process with Direct Mesh Mapping Method and Crash Analysis considering Forming Effects (직접격자 사상법을 이용한 S-rail 성형공정의 유한요소 역해석 및 성형효과를 고려한 충돌해석)

  • Kim, Seung-Ho;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.125-128
    • /
    • 2002
  • The automotive industry have made an effort to reduce the weight of vehicle structures with increased safety, while initial model of the final product does not contain any prehistoric effects in a design stave. It takes lots of time to calculate forming effects that have great influences on the energy absorption of structures. In this paper, finite element inverse analysis is adopted to calculate forming effects, such as thickness variation and effective plastic strain as well as an initial blank shape with small amount of computation time. Crash analysis can be directly performed after inverse analysis of the forming process without remeshing scheme. The direct mesh mapping method is used to calculate an initial guess from the sliding constraint surface that is extracted from the die and punch set. Analysis results show that energy absorption of structures is increased with consideration of forming effects and finite element inverse analysis is usefully applicable to calculate forming erects of vehicle structures for the crash analysis.

  • PDF

Crash Simulation on the Front End Structure of Korean Tilting Train eXpress(TTX) (한국형 고속틸팅열차의 전두부 충돌특성 시뮬레이션)

  • Kim S.R.;Kwon T.S.;Jung H.S.;You W.H.;Koo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.322-325
    • /
    • 2005
  • TTX(Tilting Train eXpress) is being designed for improving the speed of conventional railway. The purpose of this study is to evaluate energy absorbing capacity and driver's survivability for a design candidate of the front end structure of TTX. A FE model with honeycomb block, under frame, and body frame is generated for crash simulation. Based on a level-crossing accident scenario, numerical simulation is performed using LS-DYNA. The results of crash analysis show that strength improvement of the current front end structure design candidate is needed to ensure driver safety.

  • PDF

Adhesive Bonding Model Development for Car Crash Analysis (자동차 충돌 해석을 위한 접착부 해석 모델 개발)

  • Choe, Yeong-Su;Kim, Jong-Gon;Lee, Se-Heon;Lee, Hui-Beom;Jang, In-Seong;Mun, Yong-Gyu;Kim, In-Jun
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.45-47
    • /
    • 2006
  • Lightweight design, safety, vibration, energy absorption capability can no longer achieve without adhesive bond joint. Base on those concepts and cost reduction, adhesive bond FEM model development has been done. The FEM analysis and experiments were conducted in this study. Crash condition is 143 Kg Hammer weight and unit meter Height. and then These test results were used to develop resonable FEM model. To estimate which FEM model is resonable, compare hybrid joint specimen experiment results with FEM analysis results. Conclusively this study achieves optimization bonding model related crash and adhesive bond jointed hat profile crash characters.

  • PDF

Inverse Finite Element Analysis of Autobody Structures with a Direct Mesh Mapping Method for Crash Analysis Considering Forming Effets (직접격자 사상법을 이용한 차체 구조물의 유한요소 역해석 및 성형효과를 고려한 충돌해석)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.457-464
    • /
    • 2002
  • A finite element inverse analysis is utilized to consider forming effects of an S-rail on the assessment of the crashworthiness with small amount of computation time. A crash analysis can be directly performed after the inverse simulation of a forming process without a smoothing or remeshing scheme. The direct mesh mapping method is used to calculate an initial guess from a sliding constraint surface that is extracted from the die and punch set. Analysis results demonstrate that energy absorption of structures is increased when simulation considers forming effects of thickness variation and work hardening. The finite element inverse analysis is proved to be an effective tool in consideration of forming effects for the crash analysis.