• Title/Summary/Keyword: Crash Box

Search Result 34, Processing Time 0.022 seconds

Development of Manufacturing Technology for Crash Box Type Bumper Stay with Hydroforming (하이드로포밍을 이용한 크래쉬박스형 범퍼스테이 제조기술 개발)

  • Sohn S. M.;Lee M. Y.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.38-42
    • /
    • 2005
  • A bumper comprises a bumper cover, a bumper beam for distributing the load from the impacts applied to the bumper cover and reinforcing the bumper, an absorber member interposed between the bumper cover and tile bumper beam, and a pair of bumper stays which secure the bumper beam to the vehicle body. A conventional bumper stay structure is assembled into several stamped parts, so several processes are needed and the structure is complicated. In this study the bumper stay is applied to the tubular hydroforming which is known to have several advantages such as the reduction of the number of the process and the part weight. The thickness distribution of the tube is mainly considered to evaluate the hydro-formability and the shape of the tube is determined.

  • PDF

Analysis of landing mission phases for robotic exploration on phobos mar's moon

  • Stio, A.;Spinolo, P.;Carrera, E.;Augello, R.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • Landing phase is one of the crucial and most important phases during robotic aerospace explorations. It concerns the impact of the landing module of a spacecraft on a celestial body. Risks and uncertainties of landing are mainly due to the morphology of the surface, the possible presence of rocks and other obstacles or subsidence. The present work quotes results of a computational analysis direct to investigate the stability during the landing phase of a lander on Phobos, a Mars Moon. The present study makes use of available software tools for the simulation analyses and results processing. Due to the nature of the system under consideration (i.e., large displacements and interaction between several systems), multibody simulations were performed to analyze the lander's behavior after the impact with the celestial body. The landing scenario was chosen as a result of a DOE (Design of Experiments) analysis in terms of lander velocity and position, or ground slope. In order to verify the reliability of the present multibody methodology for this particular aerospace issue, two different software tools were employed in order to emphasize two different ways to simulate the crash-box, a particular component of the system used to cushion the impact. The results show the most important frames of the simulations so as to provide a general idea about how lander behaves in its descent and some trends of the main characteristics of the system. In conclusion, the success of the approach is demonstrated by highlighting that the results (crash-box shortening trend and lander's kinetic energy) are comparable between the two tools and that the stability is ensured.

Development of n Hybrid Bumper Beam Using Simulation (시뮬레이션을 이용한 하이브리드 범퍼 빔 개발)

  • Lee, J.K.;Kang, D.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.326-330
    • /
    • 2007
  • Bumper back beam is one of the essential structural components of front-end module. It should be designed to withstand a minor bump in low-speed collision, 2.5 mph crash test for example. And weight reduction is always important problem in the design of almost all the parts in car for energy saving. So, the key issues in shape design of a bumper are weight reduction and the performance in 2.5mph crash test. In this study, a light weight and high performance bumper back beam model was developed using analytical approach based on mechanics and FE simulation together.

  • PDF

Development of Manufacturing Technology for Crash Energy absorption Bumper Stay with Hydroforming (하이드로포밍을 이용한 충돌 에너지 흡수용 범퍼스테이제조기술 개발)

  • Sohn S. M.;Lee M. Y.;Kang B. H.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.27-31
    • /
    • 2004
  • A bumper comprises a bumper face, a bumper beam for distributing the load from the impacts applied to the bumper face and reinforcing the bumper, an absorber member interposed between the bumper face and the bumper beam, and a pair of bumper stays which secure the bumper beam to the vehicle body. A conventional bumper stay structure is assembled into several stamped parts, so several processes are needed and the structure is complicated. In this study the bumper stay is applied to the tubular hydroforming which is known to have several advantages such as the reduction of the number of the process and the part weight. The thickness distribution of the tube is mainly considered to evaluate the hydro-formability and the shape of the tube is determined.

  • PDF

A Crash Prediction Model for Expressways Using Genetic Programming (유전자 프로그래밍을 이용한 고속도로 사고예측모형)

  • Kwak, Ho-Chan;Kim, Dong-Kyu;Kho, Seung-Young;Lee, Chungwon
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.4
    • /
    • pp.369-379
    • /
    • 2014
  • The Statistical regression model has been used to construct crash prediction models, despite its limitations in assuming data distribution and functional form. In response to the limitations associated with the statistical regression models, a few studies based on non-parametric methods such as neural networks have been proposed to develop crash prediction models. However, these models have a major limitation in that they work as black boxes, and therefore cannot be directly used to identify the relationships between crash frequency and crash factors. A genetic programming model can find a solution to a problem without any specified assumptions and remove the black box effect. Hence, this paper investigates the application of the genetic programming technique to develope the crash prediction model. The data collected from the Gyeongbu expressway during the past three years (2010-2012), were separated into straight and curve sections. The random forest technique was applied to select the important variables that affect crash occurrence. The genetic programming model was developed based on the variables that were selected by the random forest. To test the goodness of fit of the genetic programming model, the RMSE of each model was compared to that of the negative binomial regression model. The test results indicate that the goodness of fit of the genetic programming models is superior to that of the negative binomial models.

Evaluation of Left-Turn Passages for Bicycle Traffic in Mixed Traffic Stream at Signalized Intersections (혼합교통류 신호교차로에서 자전거교통 좌회전 통행방식 평가연구)

  • Joo, Shin-Hye;Oh, Cheol;Lee, Sang-Soo
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.145-155
    • /
    • 2012
  • PURPOSES: This study proposes a novel method based on microscopic simulation models to evaluate bicycle passing ways in mixed traffic flow conditions at signalized intersections. METHODS: Both operational efficiency and safety are taken into consideration in the evaluation. A widely used performance measure, delay, is used for evaluating the operational efficiency. Regarding the safety evaluation, surrogate safety measures (SSM) to represent traffic conflicts and the level of crash severity, DeltaS and Max.DeltaV, are applied in the proposed method. RESULTS: Extensive simulations and statistical tests show that an integrated bike-box way is identified as the best in terms of operational efficiency and safety. CONCLUSIONS: The proposed method and outcomes of this study will be valuable for bicycle traffic operations and facility design.

A Framework of Test Scenario Development for Issuance of Conditional Driver's Licenses for Elderly Drivers (고령 운전자 조건부 운전면허 발급을 위한 평가 시나리오 개발 프레임워크)

  • Sangsu Kim;Younshik Chung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.134-145
    • /
    • 2024
  • The purpose of this study was to propose a framework for developing test scenarios for issuance of conditional driver's licenses. The framework was composed of five stages. Initially, we reviewed the literature on traffic crash characteristics in terms of accident frequency and severity regarding the main factors of crashes caused by older drivers. In the second stage, the characteristics of crashes attributed to non-elderly, early elderly, and late elderly drivers were analyzed using data obtained from the Traffic Accident Analysis System (TAAS), and crash types for elderly drivers were derived. In the third stage, black box videos of high-risk crash types were analyzed to derive crash stories that described the circumstances in which crashes occurred. In the fourth step, crash situations were classified by rating the types of crash stories derived to develop various scenarios. Step 5 involved creating a scenario by applying the PEGASUS 5-Layer format, which has recently been used to develop test scenarios for autonomous vehicles. The results of this study are expected to be used as a basis for developing driving ability evaluation scenarios for the issuance of conditional driver's licenses.

Effect of the Main Structure Stiffness on the Frontal Collision Behavior (차체 추요 부재의 강성이 정면 충돌 거동에 미치는 영향)

  • Kim, Chon-Wook;Han, Byoung-Kee;Kim, Jong-Chan;Jung, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.234-241
    • /
    • 2002
  • In this study, the car crash analysis that simulates the crushing behavior of car forestructure during a frontal impact is carried out. The analysis model for front impact of a car consists of the lumped mass and the spring model. The characteristics value of masses and springs is obtained from the static analysis of a target car. The deceleration-time curve obtained from the simulation are compared with NCAP test data from the NHTSA. They show a good agreement with frontal crash test data. The deceleration-time curve of passenger compartment is classified into 3 stages; beginning stage, middle stage, and last stage. And the behavior of masses at each stage is explained. The effect of stiffness variation on deceleration of passenger compartment is resolved. The maximum loaded peak-time of torque box and dash is the main factor to control the passenger compartment's maximum deceleration.