• 제목/요약/키워드: Crank mechanism

검색결과 95건 처리시간 0.023초

Dynamic Analysis of a Reciprocating Compression Mechanism Considering Hydrodynamic Forces

  • Kim, Tae-Jong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.844-853
    • /
    • 2003
  • In this paper, a dynamic analysis of the reciprocating compression mechanism of a small refrigeration compressor is performed. In the problem formulation of the mechanism dynamics, the viscous frictional force between the piston and the cylinder wall is considered in order to determine the coupled dynamic behaviors of the piston and the crankshaft. Simultaneous solutions are obtained for the equations of motion of the reciprocating mechanism and the time-dependent Reynolds equations for the lubricating film between the piston and the cylinder wall and for the oil films on the journal bearings. The hydrodynamic forces of the journal bearings are calculated by using a finite bearing model along with the Gumbel boundary condition. A Newton-Raphson procedure is employed in solving the nonlinear equations for the piston and crankshaft. The developed computer program can be used to calculate the complete trajectories of the piston and the crankshaft as functions of the crank angle under compressor-running conditions. The results explored the effects of the radial clearance of the piston, oil viscosity, and mass and mass moment of inertia of the piston and connecting rod on the stability of the compression mechanism.

Effects of cyclic mean pressure of helium gas on performance of integral crank driven stirling cryocooler

  • Hong, Yong-Ju;Ko, Junseok;Kim, Hyo-Bong;Park, Seong-Je
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권3호
    • /
    • pp.30-34
    • /
    • 2016
  • An integral crank driven Stirling cryocooler is solidly based on concepts of direct IR detector mounting on the cryocooler's cold finger, and the integral construction of the cryocooler and Dewar envelope. Performance factors of the cryocooler depend on operating conditions of the cryocooler such as a cyclic mean pressure of the working fluid, a rotational speed of driving mechanism, a thermal environment, a targeted operation temperature and etc.. At given charging condition of helium gas, the cyclic mean pressure of helium gas in the cryocooler changes with temperatures of the cold end and the environment. In this study, effects of the cyclic mean pressure of helium gas on performances of the Stirling cryocooler were investigated by numerical analyses using the Sage software. The simulation model takes into account thermodynamic losses due to an inefficiency of regenerator, a pressure drop, a shuttle heat transfer and solid conductions. Simulations are performed for the performance variation according to the cyclic mean pressure induced by the temperature of the cold end and the environment. This paper presents P-V works in the compression and expansion space, cooling capacity, contribution of losses in the expansion space.

동하중(動荷重)을 받는 선박용(船舶用) 디젤 엔진의 저널 베어링 유막해석(油膜解析)에 관한 연구(硏究) (The Oil Film Analysis of Dynamically Loaded proceeding Bearing in Diesel Engine)

  • 차지협;이상수;김정렬;김주태;김종석
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.160-165
    • /
    • 2005
  • The proceeding bearings of marine diesel engine are affected by dynamic loads from the cylinder gas pressure and the inertia force from the crank mechanism. Oil film must support the load of the shaft and it also must protect the proceeding and the bearings from damage. This study uses Goenka's new curve fit to carry out the theoretical analysis of oil film in proceeding bearings for MAN B&W 12K90MC-C and Hyundai Heavy Industry Co., Ltd HiMSEN H21/32 Engine. The applied engine's analysis results show the behavior of the proceedings in main and crank pin bearings. The results of this study will be the proper criteria for the proceeding bearings design and be available for development of the new technology in the proceeding bearing and for the high strength lining coating.

  • PDF

Basic study on a garlic (Alliumsativum L.) upright planter

  • Lee, Sang Yoon;Park, Hyo Je;Kweon, Gi Young
    • 농업과학연구
    • /
    • 제46권2호
    • /
    • pp.341-350
    • /
    • 2019
  • Garlic is one of the most popular seasoning bulb vegetables in Korea and is the most commonly used food ingredient. However, the cultivation areas are decreasing every year as the price drops due to imported garlic, and labor is insufficient to produce garlic by conventional methods. Cultivation requires various tasks until garlic is harvested. Seeding is one of the important and laborious tasks; thus, mechanization is necessary. When seeding garlic, the sprout should face upwards; otherwise, it may rot or produce poor quality garlic. This study investigated the extent of growth of northern- and southern-type garlic in eight different positions. The results show when the roots were not planted properly, the stems were weak, and the garlic bulbs were small. A simple garlic planter was manufactured with a crank-press mechanism to plant garlic in an upright position. Using this machine, a three-fold experiment was carried out with 100 strips of garlic. The test results showed that 99.4% of the planted garlic strips were positioned upright or close to being upright, and 0.6% failed to take root. An image processing algorithm was developed to locate the root part of the garlic, and the result showed a success rate of 81%. A future study will develop an automatic garlic upright planting system with a viewing system.

A class of actuated deployable and reconfigurable multilink structures

  • Phocas, Marios C.;Georgiou, Niki;Christoforou, Eftychios G.
    • Advances in Computational Design
    • /
    • 제7권3호
    • /
    • pp.189-210
    • /
    • 2022
  • Deployable structures have the ability to shift from a compact state to an expanded functional configuration. By extension, reconfigurability is another function that relies on embedded computation and actuators. Linkage-based mechanisms constitute promising systems in the development of deployable and reconfigurable structures with high flexibility and controllability. The present paper investigates the deployment and reconfigurability of modular linkage structures with a pin and a sliding support, the latter connected to a linear motion actuator. An appropriate control sequence consists of stepwise reconfigurations that involve the selective releasing of one intermediate joint in each closed-loop linkage, effectively reducing it to a 1-DOF "effective crank-slider" mechanism. This approach enables low self-weight and reduced energy consumption. A kinematics and finite-element analysis of different linkage systems, in all intermediate reconfiguration steps of a sequence, have been conducted for different lengths and geometrical characteristics of the members, as well as different actuation methods, i.e., direct and cable-driven actuation. The study provides insight into the impact of various structural typological and geometrical factors on the systems' behavior.

회전기 및 착지기 분리 구동을 가능케 하는 새로운 무릎 보장구의 기구부 설계 (A Novel Kinematic Design of a Knee Orthosis to Allow Independent Actuations During Swing and Stance Phases)

  • 표상훈;김갑순;윤정원
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.814-823
    • /
    • 2011
  • Nowadays many neurological diseases such as stroke and Parkinson diseases are continually increasing. Orthotic devices as well as exoskeletons have been widely developed for supporting movement assistance and therapy of patients. Robotic knee orthosis can compensate stiff-knee gait of the paralyzed limb and can provide patients consistent assistance at wearable environments. With keeping a robotic orthosis wearable, however, it is not easy to develop a compact and safe actuator with fast rotation and high torque for consistent supports of patients during walking. In this paper, we propose a novel kinematic model for a robotic knee orthosis to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The suggested kinematic model is composed of a hamstring device with a slide-crank mechanism, a quadriceps device with five-bar/six-bar links, and a patella device for knee covering. The quadriceps device operates in five-bar links with 2-dof motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The kinematics and velocity/force relations are analyzed for the quadriceps and hamstring devices. Finally, the adequate actuators for the suggested kinematic model are designed based on normal gait requirements. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking.

불확정성을 고려한 기계 시스템의 공차해석 및 신뢰도 해석에 관한 연구 (Study on tolerance and reliability analysis of mechanical systems with uncertainty)

  • 최진호;이세정;최동훈
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.215-226
    • /
    • 1998
  • This paper addresses an analytical approach to tolerance and reliability analysis of mechanical systems with uncertainty. Many mechanical systems consist of links and lubricated joints. The mobility method is applied to consider lubrication effects and the clearance vector model is used to stochastically define a mechanism for tolerance and reliability analysis. To show the validity of the proposed method, a four-bar path generator and a slider-crank mechanism are considered. The results obtained by applying the proposed method are compared with those by Monte-Carlo simulation.

타원계 엽형기어의 설계 및 동특성에 관한 연구 (Design of Elliptical Lobe Type Gear with Involute Profile)

  • 유명섭
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.7-14
    • /
    • 1998
  • Noncircular gears have been used for obtaining the modified anglualr velocity ratio between parallel axes. The elliptical gear, which is a kind of noncircular gears, makes use of ellipse as a pitch curve, and is applied for the measurement of the discharge of liquid. The applications of an elliptical gear are more advantageous than any other mechanism as like a crank-slider linkage or a cam mechanism in view of the accuracy and the reliability to transmit the prescribed motion. In this paper, acceding to the theoretical involute tooth profile, two pairs of the elliptical gears were manufactured by using CNC wire electronic discharge machine. The proper ranges of the operating pressure angle and of module not to generate under cutting are studied on the change of the eccentricity, because it is the eccentricity of the pitch curve that determines most of the characteristics of the elliptical gear and then the vibration analysis is executed for the verification of harmonious rotating.

  • PDF

성형충격 저감을 위한 프레스 구동기구에 관한 연구 (Study on the moving device of press machine for forming impact reduction)

  • 김정언;홍석관;김종덕;허영무;조종두;강정진
    • Design & Manufacturing
    • /
    • 제2권4호
    • /
    • pp.11-15
    • /
    • 2008
  • In the sheet metal forming using a high speed press machine, driving device, such as crank, link, and knuckle mechanism, has to be designed in consideration of impact at a moment when press die contact with material, because the impact affects a dimensional accuracy of products and a life span of press die. In this study, dynamic analysis was performed using numerical simulation in order to verify the impact reduction effect for proposed double knuckle mechanism by estimating rolling and pitching moment of slide.

  • PDF

동시 선회 스크롤 압축기의 성능해석 (Performance analysis of co-orbiting scroll compressor)

  • 김현진;김명균;서원열
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.716-724
    • /
    • 1999
  • In co-orbiting scroll compressor, the two scroll members are to orbit with independent radii, producing a relative orbit motion between them. One scroll member is driven by the crank mechanism while the motion of the other member is determined by geometrical constraints and reacting forces. This paper presents an analytical study on the performance of a co-orbiting scroll compressor. The following results have been obtained: Radial contact force between the scroll wraps is virtually free from the centrifugal force of the orbiting scroll member. The frictional losses are somewhat increased due to the complicated drive mechanism, yielding to a little lower EER compared to conventional radially compliant scroll compressors .

  • PDF