• Title/Summary/Keyword: Crank mechanism

Search Result 95, Processing Time 0.024 seconds

Design of Neural Networks Model for Transmission Angle of a Modified Mechanism

  • Yildirim Sahin;Erkaya Selcuk;Su Siikrii;Uzmay ibrahim
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1875-1884
    • /
    • 2005
  • This paper discusses Neural Networks as predictor for analyzing of transmission angle of slider-crank mechanism. There are different types of neural network algorithms obtained by using chain rules. The neural network is a feedforward neural network. On the other hand, the slider-crank mechanism is a modified mechanism by using an additional link between connecting rod and crank pin. Through extensive simulations, these neural network models are shown to be effective for prediction and analyzing of a modified slider-crank mechanism's transmission angle.

Feasible Design Area of 4 Bar Input Crank for 3 Position Synthesis of Watt-II 6 Bar Mechanism (6 절기구 응용을 위한 3 위치 운동 생성용 4절 가구 합성을 위한 입력 크랭크의 합당해 영역)

  • 범진환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.88-98
    • /
    • 1998
  • In many automatization applications, a rigid body is required to go forward and backward repeatedly through a set of given position/orientations precisely while a crank is rotated. Such a motion can be generated by 6 bar mechanism adding a dyad to a 4 bar mechanism. If this is the case for 3 position synthesis of the 4 bar mechanism, the feasible solution area for designing the 4 bar mechanism will be limited over the general solution area. This paper proposes a procedure to synthesize 4 bar mechanism to be used to generate the required motion. It is found that the only input crank of the 4 bar mechanism should be limited to satisfy the condition. And the feasible design area for the circle point/ center point of the input crank is identified so that design of the undesired mechanism could be avoided. The method is tested and the results are shown.

  • PDF

Dynamic analysis and controller design for a slider-crank mechanism with piezoelectric actuators

  • Akbari, Samin;Fallahi, Fatemeh;Pirbodaghi, Tohid
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.312-321
    • /
    • 2016
  • Dynamic behaviour of a slider-crank mechanism associated with a smart flexible connecting rod is investigated. Effect of various mechanisms' parameters including crank length, flexibility of the connecting rod and the slider's mass on the dynamic behaviour is studied. Two control schemes are proposed for elastodynamic vibration suppression of the flexible connecting rod and also obtaining a constant angular velocity for the crank. The first scheme is based on feedback linearization approach and the second one is based on a sliding mode controller. The input signals are applied by an electric motor located at the crank ground joint, and two layers of piezoelectric film bonded to the top and bottom surfaces of the connecting rod. Both of the controllers successfully suppress the vibrations of the elastic linkage.

Dynamic Balancing of Crank-type Transplanting Mechanism of Rice Transplanter (크랭크식 이앙기(移秧機) 식부기구(植付機構)의 동적(動的) 균형(均衡)에 관한 연구(硏究))

  • Lee, J.K.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.88-98
    • /
    • 1990
  • The purpose of this study was twofold : first, to reduce as much as possible the shaking moments of the crank-type transplanting mechanism of walking-type rice transplanters, and second, to evaluate whether or not a crank-type transplanting mechanism, if its shaking moment is reduced, can be used in riding-type transplanters for high speed transplanting operations. For these purposes, kinematic and force analyses of the currently available crank-type transplanting mechanisms were made and their results were compared with those observed by experimentation. The degree of shaking moment effect was also estimated Various efforts to minimize the shaking moments led to the development of a crank-type mechanism with a balancing gear, in which an eccentric balancing gear is combined into the driven link axis. Analysis of the developed mechanism showed that about 20% of the shaking energy can be reduced and about 40% of reduction in peak shaking moment can be obtained when comparing with those obtained without the balancing gear. It was concluded that crank-type transplanting mechanisms can be used for high speed operations with a forward speed of 0.9-1.2m/s if the balancing gear is additionally mounted. However, further considerations must be made to solve the space constraints in relation to the structural frame of riding type of rice transplanters.

  • PDF

Elimination of Branch Problem in Driving Crank Center point Plane for 3 Position Synthesis of 4 bar Mechanism (4절 기구의 3 위치 합성을 위한 구동 크랭크 고정점 영역상에서의 분기문제 해결)

  • Borm, Jin-Hwan;Kim, Hak-Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.80-86
    • /
    • 1995
  • A method of eliminating the branch problem in driving crank center point plane for 3 position synthesis of 4 bar mechanism is introduced. By studying various transformation characteristics from the circle point plane into the center poi t plane, the curves in the center point plane transformed from the filemon line in circle point plane are analytically obtained, which will seperate the whole center point plane into many sub-areas for the selec- tion of the center point of the driving crank. And a simple method to identify which of the sub-areas will cause the branch problem is also presented. The method will allow the selection of the center point of driving crank without the branch problem.

  • PDF

Mechanical Pressure Drive with Enhanced Downward Velocity Characteristics (슬라이드의 하강속도특성을 개선한 기계프레스의 구동부)

  • 구형욱;최호준;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.110-120
    • /
    • 1996
  • A crank-slider mechanism is driven by the rotating disk with are crank-pin guide to be applied to the deep drawing and cold forging presses. Load characteristics for different presses are summarized to see the basics of deep drawing of sheet metal and forging in terms of load-stroke relationship. Several types of conventional deep drawing presses are also shown to be compared with the ratating disk-types press. Kinematic performances by thearc guide driving mechanism are anlayzed in terms of load capaicty, stroke, and slide velocity characteristics, and they are compared with those by conventional driving , e.g. Niagara-typepress and so on. Kinematically better performances is shown by arc guide drive than those by conventional ones. The new driving mechanism is also proven to be one of the best for mass production press in terms of short cycle time. Possible applications of the arc guide press to deep drawing and cold forging work are in terms of kinematics and load capacity.

  • PDF

Dynamic Behaviour of a Radial Compliant Crank Mechanism Used in Scroll Compressor (스크롤 압축기에 적용된 가변반경 크랭크 기구의 동적 거동에 관한 연구)

  • 김태종;한동철
    • Tribology and Lubricants
    • /
    • v.12 no.2
    • /
    • pp.8-19
    • /
    • 1996
  • Scroll compressor using a slide bushing type radial compliant crank mechanism is modelled, and it's dynamic behaviour characteristics are analyzed. Sealing forces generated in the flank surfaces of the orbiting scroll depending on the distance, e, from slide bushing center to crank pin center are calculated. From the stable condition of orbiting scroll for the moment equilibrium in tangential direction, the range of e is determined as 0$r_o$. Transient response of a crankshaft supported by two journal bearings is investigated, considering applied load, moment, and unbalance force by eccentric mass. As a result, conical whirl mode with circular orbits are obtained. The characteristics of journal orbits and frictional losses are calculated with a variation of viscosity and bearing clearance.