The probability of default on the credit evaluation study is represented as a linear combination of two distributions of default and non-default, and the distribution of the probability of default are generally known in most cases. Except the well-known Kolmogorov-Smirnov statistic for testing the identity of two distribution, Kuiper, Cramer-Von Mises, Anderson-Darling, and Watson test statistics are introduced in this work. Under the assumption that the population distribution is known, modified Cramer-Von Mises, Anderson-Darling, and Watson statistics are proposed. Based on score data generated from various probability density functions of the probability of default, the modified test statistics are discussed and compared.
Journal of the Korean Data and Information Science Society
/
v.7
no.1
/
pp.37-46
/
1996
In this paper, we introduce the goodness of fit test procedure for lifetime distribution using step stress accelerated lifetime data. Using the nonpapametric estimate of acceleration factor, we prove the strong consistence of empirical distribution function under null hypothesis. The critical vailues of Kolmogorov-Smirnov, Anderson-Darling, Cramer-von Mises statistics are computed when the lifetime distibution is assumed to be exponential and Weibull. The power of test statistics are compared through Monte-Cairo simulation study.
Journal of the Korean Data and Information Science Society
/
v.5
no.2
/
pp.75-85
/
1994
In this paper, I introduce the goodness-of-fit test statistics for exponential distribution using accelerated life test data. The ALT lifetime data were obtained by assuming step-stress ALT model, specially TRV model introduced by DeGroot and Goel(1979). The critical values are obtained for proposed test statistics, Kolmogorov-Smirnov, Kuiper, Watson, Cramer-von Mises, Anderson-Darling type, under various sample sizes and significance levels. The powers of the five test statistic are compared through Monte-Cairo simulation technique.
Journal of the Korean Data and Information Science Society
/
v.28
no.4
/
pp.733-742
/
2017
There are many areas of applications where Gumbel distribution are employed such as environmental sciences, system reliability and hydrology. The goodness-of-fit test for Gumbel distribution is very important in environmental sciences, system reliability and hydrology data analysis. Therefore, we propose the two test statistics to test goodness-of-fit for the Gumbel distribution based on the generalized Lorenz curve. We compare the new test statistic with the Anderson - Darling test, Cramer - vonMises test, and modified Anderson - Darling test in terms of the power of the test through by Monte Carlo method. As a result, the new test statistics are more powerful than the other test statistics. Also, we propose new graphic method to goodness-of-fit test for the Gumbel distribution based on the generalized Lorenz curve.
Journal of Korea Society of Industrial Information Systems
/
v.5
no.2
/
pp.39-46
/
2000
Recent]y van Es (1992) and Correa (1995) proposed an estimator of entropy. In this paper, we proposed the goodness of fit test statistics for exponentiality based on Vasicek's estimator and Correa's estimator of Kullback-Leibier Information. And we compare the power of the proposed test statistics with Kolmogorov-Sminov, Kuiper, Cramer von Mises, Watson, Andersen-Darling and Finkelstein and Schefer statistics.
Journal of the Korean Data and Information Science Society
/
v.28
no.4
/
pp.797-810
/
2017
The Korean peninsula is exposed to typhoons every year. Typhoons cause huge socioeconomic damage because tropical cyclones tend to occur with strong winds and heavy precipitation. In order to understand the complex dependence structure between strong winds and heavy precipitation, the copula links a set of univariate distributions to a multivariate distribution and has been actively studied in the field of hydrology. In this study, we carried out analysis using data of wind speed and precipitation collected from the weather stations in Busan and Jeju. Log-Normal, Gamma, and Weibull distributions were considered to explain marginal distributions of the copula. Kolmogorov-Smirnov, Cramer-von-Mises, and Anderson-Darling test statistics were employed for testing the goodness-of-fit of marginal distribution. Observed pseudo data were calculated through inverse transformation method for establishing the copula. Elliptical, archimedean, and extreme copula were considered to explain the dependence structure between strong winds and heavy precipitation. In selecting the best copula, we employed the Cramer-von-Mises test and cross-validation. In Busan, precipitation according to average wind speed followed t copula and precipitation just as maximum wind speed adopted Clayton copula. In Jeju, precipitation according to maximum wind speed complied Normal copula and average wind speed as stated in precipitation followed Frank copula and maximum wind speed according to precipitation observed Husler-Reiss copula.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.38-38
/
2015
최근 다변량 확률모형을 이용한 빈도해석이 여러 수문분야에 걸쳐 연구되고 있다. 기존 일변량 빈도해석에 비해 변수활용에 대한 자유도와 물리적 현상을 정확하게 표현할 수 있다는 장점이 있으나, 표본자료의 부족, 매개변수 추정 및 적합도 검정 등의 어려움으로 실제 분야에 사용되기 어려운 점이 있다. 본 연구에서는 copula 모형에 대하여 Cramer-von Mises(CVM) 적합도 검정 시 표본자료의 적정 크기를 결정하기 위하여 Peaks-Over-Threshold(POT) 방법을 이용하였다. 서울지점의 기상청 시강우 자료를 이용하여 빈도해석을 수행하였으며, Gumbel copula 모형에 대하여 매개변수 추정은 maximum pseudolikelihood method(MPL) 방법을 이용하였다. 50년의 기록 자료에 대하여 표본크기를 50개부터 2500개까지 조절하여 CVM 통계값과 p-value를 기준으로 적정 표본크기를 산정하였다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.39-39
/
2015
극치 수문(Hydrologic extremes)분야에서는 수문자료의 분포에 따라 Gumbel, GEV, 그리고 GLO 분포와 같은 다양한 확률통계 분포형이 존재한다. GEV와 GLO 분포형의 경우 Gumbel 분포형과 달리 형상매개변수가 포함된 3변수 분포형으로써 이상 기후 현상으로 인한 잦은 극치 수문사상을 표현하는데 좀 더 유연한 것으로 알려져 있다. 특히 GLO 분포형의 경우 영국에서 홍수빈도해석 시 적정분포형으로 선정된바 있다(Institute of Hydrology, 1999). 다양한 분포형 중에서 표본 자료를 대표할 수 있는 분포형을 선정하는 통계적 기법이 적합도 검정이다. 적합도 검정에는 $x^2$-검정, Cramer von-Mises 검정, Kolmogorov-Smirnov 검정, PPCC(probability plot correlation coefficient, 확률도시 상관계수)검정 등이 있으며 그 중 PPCC 검정은 이용방법이 간편하면서도 뛰어난 기각능력을 보이는 것으로 알려져 있다. 본 연구에서는 극치 수문분야에서 널리 이용되고 있는 GLO 분포형을 대상으로 자료의 왜곡도 영향을 고려할 수 있는 확률도시 상관계수 검정의 검정통계량을 추정하여 보았다.
An, Heejin;Lee, Moonyoung;Kim, Si Yeon;Jeon, Seol;Ahn, Youngmin;Jung, Donghwa;Park, Daeryong
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.200-200
/
2022
본 연구에서는 총 강우량과 강우강도을 고려한 이변수 분석으로 연최대 호우사상을 선별하고, 두 변수를 Copula 함수로 결합하여 최적의 모델조합을 찾는 확률호우사상 산정 방법론을 제시하였다. 국내 69개 관측소의 2020년까지의 관측 자료를 대상으로 1mm 이하의 강우는 제거한 뒤, IETD(Inter-Event Time Definition) 12시간을 기준으로 강우자료를 독립적인 호우사상으로 분리하였다. 호우사상의 여러 특성 중 양의 상관관계를 갖는 총 강우량과 강우강도를 변수로 선택해 이변수 지수분포에 대입하였고, 각 지점의 연최대 호우사상 시계열을 생성하였다. 2변수 지수분포의 매개변수는 전체 기간과 연도별로 나누어 추정해 본 결과 연도별 변동성이 큰 것을 확인해 연도별 추정 방식을 선택하였다. 연최대 강우사상 시계열의 총 강우량과 강우강도는 극한 강우에 적용하는 확률분포형 중 Lognarmal, Gamma, Gumbel, GEV(Generalized Extreme Value), GPD(Generalized Pareto Distribution) 5가지를 사용하여 각각 CDF(Cumulative distribution Function) 값을 추정하였다. 계산된 CDF 값은 3가지 Copula 모형으로 결합해 joint CDF 값을 산출하였다. 총 75개의 모델조합 중 최적 모델을 찾기 위해 CVM(Cramer-von-Mises) 적합도 검정을 시행하였다. CVM의 통계량 Sn 값이 가장 작은 모델조합을 해당 지점의 최적 모델조합으로 선정하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.