• Title/Summary/Keyword: Cracked Beam

Search Result 195, Processing Time 0.023 seconds

A multi-crack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network

  • Abolbashari, Mohammad Hossein;Nazari, Foad;Rad, Javad Soltani
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.299-313
    • /
    • 2014
  • In the first part of this paper, the influences of some of crack parameters on natural frequencies of a cracked cantilever Functionally Graded Beam (FGB) are studied. A cantilever beam is modeled using Finite Element Method (FEM) and its natural frequencies are obtained for different conditions of cracks. Then effect of variation of depth and location of cracks on natural frequencies of FGB with single and multiple cracks are investigated. In the second part, two Multi-Layer Feed Forward (MLFF) Artificial Neural Networks (ANNs) are designed for prediction of FGB's Cracks' location and depth. Particle Swarm Optimization (PSO) and Back-Error Propagation (BEP) algorithms are applied for training ANNs. The accuracy of two training methods' results are investigated.

Nonlinear analysis of reinforced concrete beam elements subject to cyclical combined actions of torsion, biaxial flexure and axial forces

  • Cocchi, Gian Michele;Tiriaca, Paolo
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.829-862
    • /
    • 2004
  • This paper presents a method for the nonlinear analysis of beam elements subjected to the cyclical combined actions of torsion, biaxial flexure and axial forces based on an extension of the disturbed compression field (DSFM). The theoretical model is based on a hybrid formulation between the full rotation of the cracks model and the fixed direction of the cracking model. The described formulation, which treats cracked concrete as an orthotropic material, includes a new approach for the evaluation of the re-orientation of both the compression field and the deformation field by removing the restriction of their coincidence. A new equation of congruence permits evaluating the deformation of the middle line. The problem consists in the solution of coupled nonlinear simultaneous equations expressing equilibrium, congruence and the constitutive laws. The proposed method makes it possible to determine the deformations of the beam element according to the external stresses applied.

Experimental determination of tensile strength and KIc of polymer concretes using semi-circular bend (SCB) specimens

  • Aliha, M.R.M.;Heidari-Rarani, M.;Shokrieh, M.M.;Ayatollahi, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.823-833
    • /
    • 2012
  • An experimental method was suggested for obtaining fracture toughness ($K_{Ic}$) and the tensile strength (${\sigma}_t$) of chopped strand glass fiber reinforced polymer concretes (PC). Semi-circular bend (SCB) specimens subjected to three-point bending were used for conducting the experiments on the PC material. While the edge cracked SCB specimen could be used to evaluate fracture toughness, the tensile strength was obtained from the un-cracked SCB specimen. The experiments showed the practical applicability of both cracked and un-cracked SCB specimens for using as suitable techniques for measuring $K_{Ic}$ and ${\sigma}_t$ in polymer concretes. In comparison with the conventional rectangular bend beam specimen, the suggested SCB samples need significantly less material due to its smaller size. Furthermore, the average values of ${\sigma}_t$ and $K_{Ic}$ of tested PC were approximately 3.5 to 4.5 times the corresponding values obtained for conventional concrete showing the improved strength properties of PC relative to the conventional concretes.

A simple method to detect cracks in beam-like structures

  • Xiang, Jiawei;Matsumoto, Toshiro;Long, Jiangqi;Wang, Yanxue;Jiang, Zhansi
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.335-353
    • /
    • 2012
  • This study suggests a simple two-step method for structural vibration-based health monitoring for beam-like structures which only utilizes mode shape curvature and few natural frequencies of the structures in order to detect and localize cracks. The method is firstly based on the application of wavelet transform to detect crack locations from mode shape curvature. Then particle swarm optimization is applied to evaluate crack depth. As the Rayleigh quotient is introduced to estimate natural frequencies of cracked beams, the relationship of natural frequencies and crack depths can be easily obtained with only a simple formula. The method is demonstrated and validated numerically, using the numerical examples (cantilever beam and simply supported shaft) in the literature, and experimentally for a cantilever beam. Our results show that mode shape curvature and few estimated natural frequencies can be used to detect crack locations and depths precisely even under a certain level of noise. The method can be extended for health monitoring of other more complicated structures.

Performance evaluation of SFRC for tunnel segments based on large beam test (대형보 실험을 통한 TBM 터널 세그먼트용 강섬유보강콘크리트 성능평가)

  • Moon, Do-Young;Roh, Hwasung;Chang, Soo-Ho;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.287-298
    • /
    • 2014
  • In order to develop SFRC TBM tunnel segment, evaluating the SFRC mixture was conducted through flexural tests of SFRC beams without ordinary steel reinforcement in this study. Considered variables were compressive strengths of SFRC, aspect and mix ratio of steel fibers and total 16 specimens were fabricated and tested until failure. The load-vertical displacement results demonstrates that the effect of aspect ratio is minor when compared to results form small beam test(Moon et al, 2013). A SFRC beam resists the vertical load until the width of crack reaches to 7 mm due to steel fibers across cracked surfaces. Moreover, it is found that flexural moment estimated by equation of TR No. 63(Concrete Society, 2011) is useful for prediction of nominal strength for SFRC structure. From the investigation of fiber distribution in cracked section, it is found that dispersion improved in actual size beam compared to in standard small beam for evaluation of flexural strength.

Evaluation of Reinforcement Tension in RC Beams without stirrup using Truss Model (트러스 모델을 이용한 스터럽이 없는 철근콘크리트보의 주철근력 평가)

  • Rhee Chang Shin;Lee Seung Hyun;Kim Dae Joong;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.407-410
    • /
    • 2005
  • This paper describes an evaluation of reinforcement tension in RC beams using the variable truss models. The models were examined with the beam test results by Kim, Kim and White. Consequently, a fixed inclination $\theta$ at the support un-explains global state of internal force flow in cracked reinforced concrete beams subjected to shear and bending. Accordingly, we must introduce the arch factor for development of consistent model in reinforced concrete beams subjected to shear and bending

  • PDF

Damage localization and quantification in beams from slope discontinuities in static deflections

  • Ma, Qiaoyu;Solis, Mario
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.291-302
    • /
    • 2018
  • This paper presents a flexibility based method for damage identification from static measurements in beam-type structures. The response of the beam at the Damaged State is decomposed into the response at the Reference State plus the response at an Incremental State, which represents the effect of damage. The damage is localized by detecting slope discontinuities in the deflection of the structure at the Incremental State. A denoising filtering technique is applied to reduce the effect of experimental noise. The extent of the damage is estimated through comparing the experimental flexural stiffness of the damaged cross-sections with the corresponding values provided by analytical models of cracked beams. The paper illustrates the method by showing a numerical example with two cracks and an experimental case study of a simply supported steel beam with one artificially introduced notch type crack at three damage levels. A Digital Image Correlation system was used to accurately measure the deflections of the beam at a dense measurement grid under a set of point loads. The results indicate that the method can successfully detect and quantify a small damage from the experimental data.

A Surface Modification of Hastelloy X by Sic Coating and Ion Beam Mixing for Application in Nuclear Hydrogen Production

  • Kim, Jaeun;Park, Jaewon;Kim, Minhwan;Kim, Yongwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.205.2-205.2
    • /
    • 2014
  • The effects of ion beam mixing of a SiC film coated on super alloys (hastelloy X substrates) were studied, aiming at developing highly sustainable materials at above $900^{\circ}C$ in decomposed sulfuric acid gas (SO2/SO3/H2O) channels of a process heat exchanger. The bonding between two dissimilar materials is often problematic, particularly in coating metals with a ceramics protective layer. A strong bonding between SiC and hastelloy X was achieved by mixing the atoms at the interface by an ion-beam: The film was not peeled-off at ${\geq}900^{\circ}C$, confirming excellent adhesion, although the thermal expansion coefficient of hastelloy X is about three times higher than that of SiC. Instead, the SiC film was cracked along the grain boundary of the substrate at above $700^{\circ}C$. At ${\geq}900^{\circ}C$, the film was crystallized forming islands on the substrate so that a considerable part of the substrate surface could be exposed to the corrosive environment. To cover the exposed areas and cracks multiple coating/IBM processes have been developed. An immersion corrosion test in 80% sulfuric acid at $300^{\circ}C$ for 100 h showed that the weight retain rate was gradually increased when increasing the processing time.

  • PDF

An experimental investigation of the flexural strengthening of preloaded self-compacted RC beams using CFRP sheets and laminates composites

  • Lattif, Youssef;Hamdy, Osman
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.307-313
    • /
    • 2022
  • This paper performs an experimental study on the flexural behavior of preloaded reinforced self-compacted concrete beams strengthened with carbon fiber reinforced polymers CFRP. A group of six preloaded strengthened beams was investigated along with one unstrengthened beam used as a reference beam RB. All beams have the same dimensions and reinforcement details: three beams are strengthened with CFRP laminates against flexural failure and three beams are strengthened with CFRP sheets. For simulating actual conditions, the beams are loaded before strengthening. Then, after strengthening, the beams are tested for flexural strength using 4-point loads where cracked and ultimate load and failure mode, along with load-deflection relation are recorded. To study the different configurations of strengthening, one layer, two layers, and U-wrap formation of laminates and sheets are considered. The results show that strengthing the RC beams using CFRP is an effective method to increase the beam's capacity by 47% up to 153% where deflection is reduced by 5%-80%. So, the beams strengthened with CFRP laminates have higher load capacity and lower ductility in comparison with the beams strengthened with CFRP sheets.

A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving mass (II)-Focused on the Frequency Change- (크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(II)-진동수 변화를 중심으로-)

  • Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1304-1313
    • /
    • 2004
  • In this paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the frequency change. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the velocity of the moving mass is constant, the influences of the crack severity, the position of the crack, the moving mass, and the coupling of these factors on the frequencies of the cantilever pipe are depicted.