• 제목/요약/키워드: Crack-tip field

검색결과 138건 처리시간 0.031초

배관용 재료의 설계시 안전성 평가에 관한 연구(III) (A Study on the Safety Evaluation of Design for Piping Materials(III))

  • 김복기
    • 한국안전학회지
    • /
    • 제11권1호
    • /
    • pp.11-15
    • /
    • 1996
  • For the assessment of fracture behaviors of structural components, various fracture mechanics parameters have been applied to date. New approaches to analyze structural fracture performance under elastic-plastic condition have been proposed by the development of testing methods for characterization of material behavior which is defying to the analysis by conventional fracture parameters. In this study, on the assumption that, initiation of crack propagation of a piping materials occurs when the crack tip strain field reaches "the local fracture strain", following two major issues are discussed ; 1) The relationship between the critical value of J-integral($J_{IC}$) and the local fracture strain (${\varepsilon}_c$) in uniaxial tensile test in the region of maximum reduction area was described. 2) To proved the validity of above relations a series of tests were performed under various temperature and on the different piping materials.materials.

  • PDF

구속효과를 고려한 원자로 압력용기 균열선단에서의 응력분포 예측 (Evaluation of the Crack Tip Stress Distribution Considering Constraint Effects in the Reactor Pressure Vessel)

  • 김진수;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.756-763
    • /
    • 2001
  • In the process of integrity evaluation for nuclear power plant components, a series of fracture mechanics evaluation on surface cracks in reactor pressure vessel(RPV) must be conducted. These fracture mechanics evaluation are based on stress intensity factor, K. However, under pressurized thermal shock(PTS) conditions, the combination of thermal and mechanical stress by steep temperature gradient and internal pressure causes considerably high tensile stress at the inside of RPV wall. Besides, the internal pressure during the normal operation produces high tensile stress at the RPV wall. As a result, cracks on inner surface of RPVs may experience elastic-plastic behavior which can be explained with J-integral. In such a case, however, J-integral may possibly lose its validity due to constraint effect. In this paper, in order to verify the suitability of J-integral, tow dimensional finite element analyses were applied for various surface cracks. A total of 18 crack geometries were analyzed, and $\Omega$ stresses were obtained by comparing resulting HRR stress distribution with corresponding actual stress distributions. In conclusion, HRR stress fields were found to overestimate the actual crack-tip stress field due to constraint effect.

코스틱스방법을 이용한 고온 크리프 파괴현상에 관한 연구 (An Investigation of High Temperature Creep Phenomena by the Method of Caustics)

  • 이억섭;홍성경
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2543-2553
    • /
    • 1994
  • Caustics method has been applied successfully to determine the fracture parameters such as stress intensity factor and the J-integral for elastic and/or elastic-plastic stress field around the crack tip. For stress fields at the vicinity of crack tip in the creep domain, no experimental report concerning fracture mechanics parameters by using the caustics method has been published up to date. This study investigated creep behavior at the vicinity of crack tips at high temperature($175^{\circ}C$) and attempted to determine of proper fracture parameters for A1 5086 H24 specimens by using the caustics method. The results obtained from the limited experimental investigation are as follows; $J_{th}/J_{caus}$ is found to approach to 1 more rapidly than $K_{th}/K_{caus}$ does during incipient period(within 80 minutes). It is confirmed that experimental $K_{caus}$ approached to theoretical $K_{th}$ after 80 minutes by analyzing the ratio of $K_{th}$ to $K_{caus}$. Unlike the case of room temperature, it is confirmed experimentally that caustics diameter enlarged gradually even the distance between specimen and screen keeps constant. It showed that initial curve of the caustics was initially located in the plastic zone, but it grew out rapidly into the elastic zone for Al 5086 H24 at $175^{\circ}C$. It is confirmed that caustics is a function of time, temperature and distance between specimen and screen at high temperature.

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • 한국도로학회논문집
    • /
    • 제8권1호
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

콘크리트의 계면 파괴와 균열 전파 : 파괴규준과 수치모의 (Interface Fracture and Crack Propagation in Concrete : Fracture Criteria and Numerical Simulation)

  • 이광명
    • 콘크리트학회지
    • /
    • 제8권6호
    • /
    • pp.235-243
    • /
    • 1996
  • 콘크리트의 역학적거동은 다양한 종류의 균열의 발생과 전파에 의하여 영향을 받는다. 최근 고성능 콘크리트의 개발이 이루어지면서 계면파괴와 계면역에서의 균열양상에 대한 연구가 중요한 분야로 부각되고 있다. 탄성이며 균질한 재료에 적용되는 균열전파에 대한 규준은 계면역에서 균열이 진전하는 경우는 유효하지 않으며 이 경우에는 콘크리트에서 균열전파를 예측하기 위하여 구성재료들의 파괴인성과 그들 사이 계면의 파괴인성의상대적인 크기를 고려하여야 한다. 본 논문에서는 계면균열선단에서 계면파괴역학변수인 에너지해방률과 하중위상각을 수치해석방법을 이용하여 구하는 방법과 계면에서의 균열전파의 예측을 위한 에너지해방률에 기초를 둔 파괴규준을 제안하였다. 계면역에서의 균열양상을 조사하기 위하여 계면균열을 가진 이상복합모델에 대한 실험과 수치해석연구를 수행하였으며 대체적으로 실험결과와 규준을 이용하여 예측한 결과가 서로 일치하는 결과를 얻었다.

Free vibration analysis of cracked thin plates using generalized differential quadrature element method

  • Shahverdi, Hossein;Navardi, Mohammad M.
    • Structural Engineering and Mechanics
    • /
    • 제62권3호
    • /
    • pp.345-355
    • /
    • 2017
  • The aim of the present study is to develop an elemental approach based on the differential quadrature method for free vibration analysis of cracked thin plate structures. For this purpose, the equations of motion are established using the classical plate theory. The well-known Generalized Differential Quadrature Method (GDQM) is utilized to discretize the governing equations on each computational subdomain or element. In this method, the differential terms of a quantity field at a specific computational point should be expressed in a series form of the related quantity at all other sampling points along the domain. However, the existence of any geometric discontinuity, such as a crack, in a computational domain causes some problems in the calculation of differential terms. In order to resolve this problem, the multi-block or elemental strategy is implemented to divide such geometry into several subdomains. By constructing the appropriate continuity conditions at each interface between adjacent elements and a crack tip, the whole discretized governing equations of the structure can be established. Therefore, the free vibration analysis of a cracked thin plate will be provided via the achieved eigenvalue problem. The obtained results show a good agreement in comparison with those found by finite element method.

십자형 필렛 용접 이음부 의 굽힘피로 특성 에 대한 파괴역학적 고찰 (Fracture mechanics approach to bending fatigue behavior of cruciform fillet welded joint)

  • 엄동석;강성원;김영기
    • Journal of Welding and Joining
    • /
    • 제3권2호
    • /
    • pp.52-63
    • /
    • 1985
  • Fillet welded joints, specially in ship structure, are well known the critical part where stress concentrate or crack initiates and grows. This paper is concerned with the study of the behavior of fatigue crack growth t the root and toe of load carrying cruciform fillet welded joints under three points bending by the determination of stress intensity factor from the J-Integral, using the Finite Element Method. The stress intensity factor was investigated in accordance to the variation of the weld size (H/Tp). weld penetration (a/W) and plate thickness (2a'/Tp). As mixed mode is occurred on account of shearing force under the three points bending, Stern's reciprocal theory is applied to confirm which mode is the major one. The main results may be summarized as follows 1) The calculation formula of the stress intensity factor at the both of root and toe of the joint was obtained to estimate the stress intensity factor in the arbitrary case. 2) The change of stress field around crack tip gives much influence on each other at the roof and toe as H/Tp decreases. 3) Mode I is a major mode under the three points bending.

  • PDF

Three-dimensional numerical simulation of hydrogen-induced multi-field coupling behavior in cracked zircaloy cladding tubes

  • Xia, Zhongjia;Wang, Bingzhong;Zhang, Jingyu;Ding, Shurong;Chen, Liang;Pang, Hua;Song, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.238-248
    • /
    • 2019
  • In the high-temperature and high-pressure irradiation environments, the multi-field coupling processes of hydrogen diffusion, hydride precipitation and mechanical deformation in Zircaloy cladding tubes occur. To simulate this hydrogen-induced complex behavior, a multi-field coupling method is developed, with the irradiation hardening effects and hydride-precipitation-induced expansion and hardening effects involved in the mechanical constitutive relation. The out-pile tests for a cracked cladding tube after irradiation are simulated, and the numerical results of the multi-fields at different temperatures are obtained and analyzed. The results indicate that: (1) the hydrostatic stress gradient is the fundamental factor to activate the hydrogen-induced multi-field coupling behavior excluding the temperature gradient; (2) in the local crack-tip region, hydrides will precipitate faster at the considered higher temperatures, which can be fundamentally attributed to the sensitivity of TSSP and hydrogen diffusion coefficient to temperature. The mechanism is partly explained for the enlarged velocity values of delayed hydride cracking (DHC) at high temperatures before crack arrest. This work lays a foundation for the future research on DHC.

An experimental-computational investigation of fracture in brittle materials

  • De Proft, K.;Wells, G.N.;Sluys, L.J.;De Wilde, W.P.
    • Computers and Concrete
    • /
    • 제1권3호
    • /
    • pp.227-248
    • /
    • 2004
  • A combined experimental-computational study of a double edge-notched stone specimen subjected to tensile loading is presented. In the experimental part, the load-deformation response and the displacement field around the crack tip are recorded. An Electronic Speckle Pattern Interferometer (ESPI) is used to obtain the local displacement field. The experimental results are used to validate a numerical model for the description of fracture using finite elements. The numerical model uses displacement discontinuities to model cracks. At the discontinuity, a plasticity-based cohesive zone model is applied for monotonic loading and a combined damage-plasticity cohesive zone model is used for cyclic loading. Both local and global results from the numerical simulations are compared with experimental data. It is shown that local measurements add important information for the validation of the numerical model. Consequently, the numerical models are enhanced in order to correctly capture the experimentally observed behaviour.

입계기공의 확산성장 모델을 이용한 고온 기기의 크립균열전파해석(3)

  • 전재영
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1194-1201
    • /
    • 1996
  • For the case of creep-fatigue interaction, the damage zone developed in front of the growing crack-tip during creep regime is important because it can affect the damage mechanism to be occured by the following fatigue load. These are studied in theis paper through proper consideration of the cavitiy-size dependent sintering stress which is approximated by polynomials. It is shown that the inclination of reversed damage zone size with respect to the applied load parameter can be explained by considering realistic sintering stress distribution. However, the resultant stress field has $r^{1/2+\theta}$ singularity, regardliss of the profile of variable sintering stress, which is the same to that case solved for constant sintering stress.