• Title/Summary/Keyword: Crack retardation effect

Search Result 56, Processing Time 0.025 seconds

The Effect of Thickness of Plate on Fatigue Crack Propagation Behavior by Indentations (판두께에 따른 압흔가공에 의한 피로크랙 전파거동)

  • 송삼홍;최진호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.826-830
    • /
    • 1994
  • Making Brinell indentations facing each other near the crack tip is very effective method in increasing fatigue life. In this paper, fatigue test was performed after indentation to investigate the effect of thickness of specimen. The results show that fatigue lives increased my making indentation and retardation cycle is inverse proportional to thickness of specimen.

  • PDF

The Effect of Stress Ratio on Fatigue Crack Propagation Rate and Arrest Behavior in 7075-T735 Al Alloy (7075-T735 Al 합금의 피로균열 진전속도와 정류거동에 미치는 응력비의 영향)

  • 오세욱;강상훈;허정원;김태형
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.131-139
    • /
    • 1992
  • The understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading is very important for life prediction of the air travel structures. Particularly, the retardation and arrest behavior of fatigue crack propagation by single tension overloading is essential to the understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading. Numerous studies of the retardation behavior have been performed, however investigations of the arrest behavior have not been enough yet. As for the arrest behavior, Willenborg had reported that the overload shut-off ratio $[R_{so}=(K_{OL})/K_{max})_{crack arrest}]$ had been the material constant, but recently several investigators have reported that the overload shut-off ratio depends upon the stress ratio. In this study, authors have investigated the effect of stress ratio on the threshold overload shut-off ratio to generate arrest of fatigue crack growth in high tensile aluminum alloy 7075-T735 which have used in material for air travel structures, It has been $-0.4\leqqR\leqq0.4$ till now, the region of stress ratio investigated. The threshold overload shut-off ratio has decreased as stress ratio has increased in overall region of -$-0.4\leqqR\leqq0.4$ and the linearity has been seen in this material. Moreover, the experimental equation between $R_{so}$ and R has been made; The relation has been $R_{so}=-R+2.6$.

  • PDF

A Quantitative Analysis of ΔK Conversion Method for the Retardation Behavior of Fatigue Crack Growth in Varying Thickness of Al 2024-T3 Sheet Alloy (판재 Al 2024-T3 합금재료에서 나타나는 두께별 피로균열진전지연거동에 관한 ΔK환산법의 정량적분)

  • Kim, Seung-Gwon;Lee, Ouk-Sub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1415-1422
    • /
    • 2011
  • Sheet aluminum alloys used in manufacturing of machine structures for transportation show the difference of crack growth speed depending on thickness under the constant fatigue stress condition. The referred thickness effect is a major fatigue failure property of sheet aluminum alloys. In this work, we identified the thickness effect in fatigue test of thick plate and thin plate of Al 2024-T3 alloy under the constant fatigue stress condition, and presented the thickness effect to a correlative equation, $U_{i}^{equ}=f(R_t)$ which is determined by the shape factor, thickness ratio, $R_t$ and the loading factor, equivalent effective stress intensity ratio depending on thickness, $U_{i}^{equ}$. And we analyzed quantitatively the crack growth retardation behavior in thin plate compared to thick plate by the thickness effect using ${\Delta}K$ conversion method. We obtained such values as decrement of thickness(DoT), decrement of stress intensity factor range, ${\Delta}K$ (DoS) and identified the relation between them to present the nature of thickness effect in this work.

A Study on the Application of Pre-Indentation Technique for Fastener Hole Model (FASTENER HOLE 모델의 대한 예비압입 적용 연구)

  • Hwang,Jeong-Seon;Jo,Hwan-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.26-31
    • /
    • 2003
  • Aging aircraft accumulates widespread fatigue damage commonly referred to as multiple site damage(MSO). For ductile material such as 2024-T3 aluminum, MSO may lower the service life below that which is predicted by conventional fracture mechanics. The present paper is concerned with the fatigue life extension by pre-indentation technique for thin 2024-T3 aluminum plate to decelerate the crack propagation rate in the panels with MSO. The panel with fastener holes can be simply modelled by Hole/Slot type Middle-Tension specimen. Results of fatigue testing show significantly improving failure cycles from 10 to 40 times. This retardation effect is decreased by increasing the loading level in the constant amplitude loading. In the sense of retardation mechanism, the crack propagation rate is gradually attenuated by entering the indentation mark and maintains at the lowest value for a long period after the edge of crack passes the center of indentation area.

Experimental Validation of Crack Growth Prognosis under Variable Amplitude Loads (변동진폭하중 하에서 균열성장 예측의 실험적 검증)

  • Leem, Sang-Hyuck;An, Dawn;Lim, Che-Kyu;Hwang, Woongki;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.267-275
    • /
    • 2012
  • In this study, crack growth in a center-cracked plate is predicted under mode I variable amplitude loading, and the result is validated by experiment. Huang's model is employed to describe crack growth with acceleration and retardation due to the variable loading effect. Experiment is conducted with Al6016-T6 plate, in which the load is applied, and crack length is measured periodically. Particle Filter algorithm, which is based on the Bayesian approach, is used to estimate model parameters from the experimental data, and predict the crack growth of the future in the probabilistic way. The prediction is validated by the run-to-failure results, from which it is observed that the method predicts well the unique behavior of crack retardation and the more data are used, the closer prediction we get to the actual run-to-failure data.

Effect of Anisotropy on Fatigue Crack Propagation Rate and Arrest Behavior with 2024-T3 Alumunum Alloy (2024-T3 A1 합금의 이방성이 피로균열진전속도와 정류거동에 미치는 영향)

  • 오세욱;김태형;오정종
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.124-132
    • /
    • 1993
  • In order to examine the effect of anisotropy and stress ratio on fatigue crack propagation rate and opening-closing behavior and also arrest behavior by single tension peak overload, the fatigue tests of constant amplitude atress and single tension peak overload adding to cycle of constant amplitude were carried out in stress ratio of -0.4, -0.2, and 0.4 with materials of T-L and L-T directions in 2024-T3 aluminum alloy plate. Crack opening-closing begavior were measured by the compliance method using COD gage and strain gage. In case of the crack opening-closing behavior was measured by strain gage, the effect of stress ratio is unchangeable. But in the case of COD gage, that is remarkably decreased. Fictitious effective stress intensity factor(U sub(f)) and effective stress intensity factor ratio(U) in L-T direction was higher than those in T-L direction and also threshold arrest overload ratio incrased as stress ratio decreased and that of T-L direction was higher than that in L-T direction.

  • PDF

Prediction of Fatigue Crack Propagation Behavior Under Mixed-Mode Single Overload (혼합모드 단일과대하중 하에서 피로균열 전파거동의 예측)

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.359-364
    • /
    • 2004
  • In this study, experiments were tried on the mixed-mode I+II single overloading model which changes the loading mode of overload and fatigue load. Aspects of deformation field in front of the crack which is formed by mixed-mode I+II single overloading were experimentally studied. Then the shape and size of mixed-mode plastic zone were approximately calculated. The propagation behavior of fatigue crack was examined under the test conditions combined by changing the loading mode. The behavior of fatigue cracks were greatly affected by shapes of plastic deformation field and applying mode of fatigue load. Accuracy of prediction and evaluation for fatigue life may be improved by considering all aspects of deformation and behavior of fatigue cracks.

  • PDF

A Experimental Study on the Fatigue Crack Growth Behavior of Thick Plate with Repaired Crack (보수된 균열을 가진 두꺼운 평판의 피로균열 성장 거동에 관한 실험적 연구)

  • Chung, Ki-Hyun;Yang, Won-Ho;Kim, Cheol;Sung, Ki-Deug
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.292-298
    • /
    • 2001
  • An experimental investigation of the effect of composite patching repair was conducted to characterize the fatigue crack growth behavior in thick A16061-T6 (6mm) panels with single bonded patch by fiber reinforced composite patch. Four patch lengths and no patch plate were examined. An analytical procedure, involving three-dimensional finite element method having three layers to model cracked aluminum plate, epoxy by adhesive and composite patch, is calculated the stress intensity factors. From the calculated stress intensity factors, the fatigue crack growth rates are obtained. At the single patching type, different fatigue crack growth ratios through the plate thickness were investigated by using the experimental and analytical results. The results demonstrated that there was a definite variation in fatigue life depending on the size of composite patch. While crack reached the patch end, retardation of crack growth was also revealed in the bonded repair.

  • PDF

A Study on Fatigue Crack Growth of Composite Patching Repaired on Cracked Thick Plate (복합재료 보강재로 보수되어진 균열을 가진 두꺼운 평판의 피로균열 성장에 관한 연구)

  • Jeong, Gi-Hyeon;Yang, Won-Ho;Go, Myeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2070-2077
    • /
    • 2001
  • An experimental investigation of the effect of composite patching repair was conducted to characterize the fatigue crack growth behavior in thick A16061-T6 (6mm) panels with single bonded patch by fiber reinforced composite patch. Four patch lengths and no patch plate were examined. An analytical procedure, involving three-dimensional finite element method having three layers to model cracked aluminum plate, epoxy by adhesive and composite Patch, is calculated the stress intensity factors. From the calculated stress intensity factors, the fatigue crack growth rates are obtained. At the single patching type, different fatigue crack growth ratios through the palate thickness were investigated by using the experimental and analytical results. The results demonstrated that there was a definite variation in fatigue life depending on the size of composite patch. While crack reached the patch end, retardation of crack growth was also revealed in the bonded repair.

Fatigue Crack Propagation Behaviors under the Controlloed Stress Amplitude (하중진폭제어에 따르는 피로균열전파거동)

  • Kim, Sang-Chul;Ham, Kyoung-Chun;Kang, Dong-Myeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.140-148
    • /
    • 1992
  • The effect of mechanical, properties in the plastic zone near the crack-tip was investigated, under various controlled loading conditions, i.e., ${\Delta}K$ increasing, ${\Delta}K$ decreasing, and single overload test. For both ${\Delta}K$ decreasing test and ${\Delta}K$ increasing test with constant stress ratio, it is found that the ratio of material constant m'( ${\Delta}K$ decreasing test) to material constant m( ${\Delta}K$ increasing test) is larger than 1 for n<0.1, and it is equal to 1 for 0.10.2. A modified crack growth rate equation based on Forman's equation which applied stable region of fatigue crack propagation in ${\Delta}K$ decreasing test is proposed. Within the limit of this single overload test, an empirical relation between among the retardation ratio (Nd/ $N^{*}$), the strain hardening exponent (n) and the percent peak load (%PL) has been established.established.

  • PDF