• Title/Summary/Keyword: Crack load

Search Result 1,761, Processing Time 0.027 seconds

A Study on the Fatigue Strength Improvement of Welded Parts of SS400 Using the Shot Peening and PWHT Technique for Subway Cars (쇼트피닝과 후열처리에 의한 전동차용 SS400 용접부 피로강도 개선연구)

  • Kim, Jin-Hern;Kim, Hyun-Gyu;Goo, Byeong-Choon;Cheong, Seong-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.65-70
    • /
    • 2007
  • Welding is the most commonly used method to produce bogie and carbody of Electrical Multiple Units(EMU), because it increases the strength and lowers the weight of EMU. Since bogies are constantly exposed to repeated reacting load during acceleration and deceleration, it is also true that crack normally occurs at welding parts. In this study, we have investigated the fatigue strength of SS400 on welded parts in order to find efficiency of treatment after welding by shot peening and Post-Weld heat treatment(PWHT) with butt welded specimens. The results of fatigue test indicate that the measurement of base material specimen is 236MPa, welded specimen is 132MPa and the specimen of PWHT is 107MPa approximately. We concluded that the measurement of welded specimen and PWHT is approximately 44 and 54 percents lower than the base material specimen, respectively. Another finding is that the peened specimen is approximately 23 and 61 percents higher than the base material specimen in terms of the fatigue in strength of specimens.

  • PDF

The Durability of Polybutylene Succinate Monofilament for Fishing Net Twines by Outdoor Exposure Test (옥외 노출시험에 의한 PBS 단일섬유 망사의 내구성 변화)

  • Park, Seong-Wook;Kim, Seong-Hun;Lim, Ji-Hyun;Choi, Hea-Sun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.4
    • /
    • pp.766-774
    • /
    • 2013
  • Biodegradable polybutylene succinate(PBS) is a kind of environmentally friendly plastics for fisheries, because it can mitigate the ghost fishing problem caused by gill-net and trap fisheries. To evaluate durability of PBS monofilament, each of different diameter 3 types of monofilaments were spun and exposed to 56 month outdoor and then their gravity, modification of surface, breaking strength, and elongation were analysed. The gravity of PBS monofilament was estimated to be approximately 1.24 when spinning ratio from 4.8 to 6.1. PBS monofilaments did not show any crack after 56 month exposed to outdoor and load-elastic elongation curve was showed sigmoid type. Decreasing ratio of elongation was appeared in the thinnest monofilament 0.2mm diameter and breaking strength was in the thickest monofilament 0.4mm diameter. Breaking strength and elongation at break were decreased rapidly after 48 month exposed to outdoor. Breaking strength reduced linearly after 48 month exposure, while no such linear relationship was found in the case of elongation at break. In results, it was investigated that the durability of PBS monofilament nets for gillnet and trap were 24, 50 month when keep to land, respectively.

An Investigation of Stress Corrosion Cracking Charactistics of SUS 304 Stainless Steel in $MgCl_2$ Aqueous Solution ($MgCl_2$ 수용액 중에서 SUS 304강의 SCC 특성에 관한 연구)

  • 임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.133-136
    • /
    • 1984
  • The characteristics of the stress corrosion cracking of SUS 304 stainless steel were studied with the specimens of the constant displacement type under the environment of various MgCl sub(2) aqueous solutions. Main results obtained are as follows; 1) Latent time of crack initiations is delayed in the SCC under low condition of initial stress intensity K sub(Ii) value. 2) SCC occurs owing to the passive film-rupture by both load and Cl ion under MgCl sub(2) boiled aqueous solution. 3) The susceptibility of SCC can be largely improved by reducing the temperature in case of the high concentration of MgCl sub(2) aqueous solution.

  • PDF

High performance fibre reinforced cement concrete slender structural walls

  • Ganesan, N.;Indira, P.V.;Seena., P.
    • Advances in concrete construction
    • /
    • v.2 no.4
    • /
    • pp.309-324
    • /
    • 2014
  • In the design of reinforced concrete structural walls, in order to ensure adequate inelastic displacement behaviour and to sustain deformation demands imposed by strong ground motions, special reinforcement is considered while designing. However, these would lead to severe reinforcement congestion and difficulties during construction. Addition of randomly distributed discrete fibres in concrete improves the flexural behaviour of structural elements because of its enhanced tensile properties and this leads to reduction in congestion. This paper deals with effect of addition of steel fibres on the behavior of high performance fibre reinforced cement concrete (HPFRCC) slender structural walls with the different volume fractions of steel fibres. The specimens were subjected to quasi static lateral reverse cyclic loading until failure. The high performance concrete (HPC) used was obtained based on the guidelines given in ACI 211.1 which was further modified by prof.Aitcin (1998). The volume fraction of the fibres used in this study varied from 0 to 1% with an increment of 0.5%. The results were analysed critically and appraised. The study indicates that the addition of steel fibres in the HPC structural walls enhances the first crack load, strength, initial stiffness and energy dissipation capacity.

Nonlinear Fracture Finite Element Model of Reinforced Concrete Plates (철근콘크리트판의 비선형 파괴 유한요소 모델에 관한 연구)

  • Jin, Chi Sub;Cha, Young Soo;Eom, Jong Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.11-20
    • /
    • 1988
  • A general finite element method is developed to analyze reinforced concrete plates under dead loads and monotonically increasing live loads. This method can be used to trace the load-deformation response and crack propagation through elastic, inelastic and ultimate ranges. The internal concrete and steel stresses can also be determined for any stage of the response history. A layered 8 node isoparametric element taking account of coupling effect between the membrane and the bending action is developed. An incremental tangent stiffness method is used to obtain a numerical solution. Validity of the method is studied by comparing the numerical solutions with other results.

  • PDF

Effects of Molding Condition on Surface Unevenness of GMT-Sheet Moldings (GMT-Sheet 성형품의 표면요철에 미치는 성형조건의 영향)

  • Kim, Hyoung-Seok;Kim, Jin-Woo;Kim, Yong-Jae;Lee, Dong-Gi
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.30-38
    • /
    • 2010
  • Observing of GMT-Sheet in molding conditions, we have investigated unexpected phenomenons of moldings surface. In microscope investigation, we observe that there exist deficiencies on the surface of GMT-Sheet moldings, such as the spherulite, fiber projection, crack, fiber exposure, micro-weldline, pinhole and winding. They are caused to arise unevenness and phenomenons influence polish on surface. Especially, the major cause of the unevenness, effected to surface roughness, is a shrinking of matrix in the process of holding pressure and cooling temperature. The higher holding pressure load in a molding process and the lower demolding temperature in an annealing experiment, the better GMT-Sheet moldings improved its appearance.

A Study on Mechanical Characteristics of Interface of Ceramic/Metal Composites (세라믹/금속 이종재료 계면의 기계적 특성에 관한 연구)

  • Seo, Do-Won;Kim, Hak-Kun;Song, Jun-Hee;Lim, Jae-Kyoo;Park, Chan-Gyung
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.121-126
    • /
    • 2000
  • Metal/Ceramic structures have many attractive properties, with great potential for applications that demand high stiffness, as well as chemical and biological stability, thermal and electrical insulation. They are currently in use for mechanical and thermal protection in cutting tool and engine parts. With all their great advantage, ceramics suffer from one major problem they are brittle, and are especially susceptible to cracking from surface contacts. Delamination at the interfaces with adjacent layers is a particularly disturbing problem, and can cause premature failure of a composite system. so determination of adhesive properties of coating is one of the most important problems for the extension of the use of coated materials. In this work, mechanical characteristics of Interface of ceramic/Metal composites are evaluated by means of hardness test, indentation test apparent interfacial toughness and bonding strength test. The interface indentation test provides a relation between the applied load(P) and the length of the crack(a) created at the interface between the coating and the substrate.

  • PDF

Stress Analysis of Bonding Interface in the Dissimilar Friction Welded Joints (STS304와 Sl5C 이종마찰압접부의 접합계면 응력해석)

  • 오정국;차용순;성백섭;박창언;김하식;김충환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.65-71
    • /
    • 2002
  • Friction welding has may merits such as energy efficiency, simple processing, etc. but it is difficult to obtain good welding at the welded interfaces and heat affected zone. It is discovered that stress singularity exists at the interferes and heat affected zone. The computer program based on boundary element method is utilized in this study. A mathematical model is implemented based on results from several experiments performed at and around the welded interfaces and heat affected zone of disimilar metals under static and dynamic loadings. This stay is to investigate the characteristics of the deformation and fracture behavior around interfaces for friction welded materials under static tensile load. Also, the stress distribution at the tip of crack is analyzed by using BU based on Kelvin's solution of 2-dimensional binding zone. The results of BEM are identical with those in case of considering interfaces of both heat affected zone. Also, stress singularity at the tip of interfaces appears when the elastic modulus ratio is 1.07.

Reliability Monitoring of Adhesive Joints by Piezoelectricity (압전특성을 이용한 접착 조인트의 안전성 모니터링)

  • Kwon, Jae-Wook;Chin, Woo-Seok;Lee, Dai-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1388-1397
    • /
    • 2003
  • Since the reliability of adhesively bonded joints for composite structures is dependent on many parameters such as the shape and dimensions of joints, type of applied load, and environment, so an accurate estimation of the fatigue life of adhesively bonded joints is seldom possible, which necessitates an in-situ reliability monitoring of the joints during the operation of structures. In this study, a self-sensor method for adhesively bonded joints was devised, in which the adhesive used works as a piezoelectric material to send changing signals depending on the integrity of the joint. From the investigation, it was found that the electric charge increased gradually as cracks initiated and propagated in the adhesive layer, and had its maximum value when the adhesively bonded joint failed. So it is feasible to monitor the integrity of the joint during its lifetime. Finally, a relationship between the piezoelectric property of the adhesive and crack propagation was obtained from the experimental results.

Optimum Failure Prediction Model of Steam Generator Tube with Two Parallel Axial Through-Wall Cracks (두개의 평행한 축방향 관통균열이 존재하는 증기발생기 세관의 최적 파손예측모델)

  • Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan;Kim, Nak-Cheol;Moon, Seong-In;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1186-1191
    • /
    • 2003
  • The 40% of wall criterion, which is generally used for the plugging of steam generator tubes, may be applied only to a single crack. In the previous study, a total of 9 failure models were introduced to estimate the local failure of the ligament between cracks and the optimum coalescence model of multiple collinear cracks was determined among these models. It is, however, known that parallel axial cracks are more frequently detected during an in-service inspection than collinear axial cracks. The objective of this study is to determine the plastic collapse model which can be applied to the steam generator tube containing two parallel axial through-wall cracks. Nine previously proposed local failure models were selected as the candidates. Subsequently interaction effects between two adjacent cracks were evaluated to screen them. Plastic collapse tests for the plate with two parallel through-wall cracks and finite element analyses were performed for the determination of the optimum plastic collapse model. By comparing the test results with the prediction results obtained from the candidate models, a plastic zone contact model was selected as an optimum model.

  • PDF