• Title/Summary/Keyword: Crack formation

Search Result 395, Processing Time 0.025 seconds

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.

Estimation of Mechanical Properties of Concrete in Early Age by Resonance Frequency Test (공명주기식 동탄성계수를 이용한 초기재령 콘크리트의 역학적 성질 예측)

  • Kim, Jin-Keun;Kiim, Hoon;Noh, Jae-Ho
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.164-171
    • /
    • 1995
  • Drying shrinkage and hydration heat are important factors on the initiation of the crack in con crete at early age. Therefore, the stress caused by hydration heat and drying shrinkage should be .analyzed to predict whether the crack occurrs or not. And, mechanical properties of early age concrete is also required for the predicting crack formation In this study, non-destructive test method of resonance frequency was used to find the relation between dynamic modulus and mechanical properties of concrete in early age. Test results were compared with existing equations, and a new equation based on test. results in this study and other data was also proposed

A Study of Growth and Properties of GaN films on Si(111) by MOCVD (Si(111) 기판을 이용한 crack-free GaN 박막 성장과 PL특성)

  • Kim, Deok-Kyu;Jin, Hu-Jie;Song, Min-Jong;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.187-188
    • /
    • 2005
  • The characteristics of GaN epitaxial layers grown on silicon (111) substrates by metalorganic vapor phase epitaxy have been investigated. The only control of AlN thickness was found to decrease the stress sufficiently for avoiding crack formation in an overgrown thick ($2.6{\mu}m$) GaN layer. X-ray diffraction and photoluminescence measurements are used to determine the effect of AlN thickness on the strain in the subsequent GaN layers. Strong band edge photoluminescence of GaN on Si(111) was observed with a full width at half maximum of the bound exciton line as low as 17meV at 13K.

  • PDF

Application of Electro-deposition Method for Crack Closing and Surface Improvement of Reinforced Concrete (철근콘크리트의 균열폐색 및 표면개선을 위한 전착의 응용)

  • 문한영;류재석
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.79-88
    • /
    • 1999
  • In this paper, the electro-deposition method for the rehabilitation of cracked concrete, based on the electro-chemical technique, is presented. The main purpose of this paper is to apply this technique to reinforced concrete members on land. After cracking with a specified load(crack width 0.5mm), 10$\times$10$\times$20cm concrete specimens with embedded steel bars were immersed in several solutions, then a constant current density between the embedded steel in concrete and an electrode in the solution was applied for 4~20 weeks. The results indicate that electro-deposits formed in this process are able to close concrete cracks and to coat the concrete surface and that formation of these electro-deposits is confirmed to have an effect of protection against detrimental materials. Therefore, it is demonstrated that the electro-deposition method can be usefully applied for the rehabilitation technique of concrete.

Particle Impact Damage behaviors in silicon Carbide Under Gas Turbine Environments-Effect of Oxide Layer Due to Long-Term Oxidation- (세라믹 가스터빈 환경을 고려한 탄화규소의 입자충격 손상거동-장기간 산화에 따른 산화물층의 영향-)

  • 신형섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1033-1040
    • /
    • 1995
  • To simulate strength reliability and durability of ceramic parts under gas turbine application environments, particle impact damage behaviors in silicon carbide oxidized at 1673 K and 1523 K for 200 hours in atmosphere were investigated. The long-term oxidation produced a slight increase in the static fracture strength. Particle impact caused a spalling of oxide layer. The patterns of spalling and damage induced were dependent upon the property and impact velocity of the particle. Especially, the difference in spalling behaviors induced could be explained by introducing the formation mechanism of lateral crack and elastic-plastic deformation behavior at impact sit. At the low impact velocity regions, the oxidized SiC showed a little increase in the residual strength due to the cushion effect of oxide layer, as compared with the as-received SiC without oxide layer.

Analysis on the Tensile Fracture Behavior of SFRC (SFRC의 인장 파괴거동에 대한 해석)

  • 김규선;이차돈;심종성;최기봉;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.65-72
    • /
    • 1993
  • Steel fiber reinforced concrete(SFRC) which is made by short, randomly distributed steel fibers in concrete is superior in its tensile mechanical properties to plain concrete in enhancement of tensile strength and tensile ductility. These improvements are attributed to crack arresting mechanism and formation of longer crack paths due to fibers , which as a consequence lead to increase in energy absorption capacity of SFRC. In the post-peak region under tensile stresses, major macrocrack forms at critical section. The opening of this macrocrack is mainly resisted by both of the fiber pull-out bridging the cracked surfaces and the resistance by matrix softening. In this study, micromechaincal approach has been made in order to simulate tensile behavior of SFRC and based on which the theoretical model is presented. This model reflects the features of both the composite material concept and the spacing concept in predicting tensile strength of SFRC. The model also takes into account for the effects of matrix tensile softening and fiber bridging by pull-out on the resistance for the post-peak behavior of SFRC. It has been shown that the developed model satisfactory predicts the experimental results.

  • PDF

Development of Ceramic Composite Membranes for Gas Separation: III. Examination of Membrane Characteristics by the Gas Permeation Model (기체분리용 세라믹 복합분리막의 개발: III. 기체투과 모델에 의한 막의 특성 규명)

  • 현상훈;윤성필;강범석
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.905-911
    • /
    • 1992
  • Model equations for the gas permeation through a ceramic composite membrane were derived for examining the existence of crack, the reproducibility, and the microstructural properties of composite membranes. From the results of analyzing the nitrogen permeability data through alumina-tube supported TiO2 and SiO2 composite membranes, the extent of cracking, and the formation and structure of membrane top-layers were modelled. It was proved that the crack-free and reproducible composite membranes could be easily prepared only by the pore-filled coating within pores of the support in the sol-gel coating process.

  • PDF

The Effect of Deformation Induced Phase on Tensile Properties and Fatigue Behavior of Austenitic High Mn steel (오스테나이트계 고망간강에서 인장 특성과 피로거동에 미치는 변형유기상의 영향)

  • Choi, S.M.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.277-287
    • /
    • 1994
  • The effect of grain size on the tensile properties and fatigue behavior of austenitic high Mn steel has been investigated. The recrystallized austenite grain size of the cold rolled high Mn steel was increased as the annealing temperature increased from $600^{\circ}C$ to $1000^{\circ}C$. Larger austenite grain size decreased the yield strength and the tensile strength, and increased the uniform elongation due to transformation of some austenite into twins or E-martensite phase during deformation. Austenite grain refinement increased the tendency to form dislocation cells, instead. The specimen annealed at $1000^{\circ}C$ with large grain size showed lower fatigue crack propagation rate in low ${\Delta}K$ region due to rougher fracture surface caused by formation of deformation twins during fatigue at the crack tip region.

  • PDF

Genetic algorithm optimization of precast hollow core slabs

  • Sgambi, Luca;Gkoumas, Konstantinos;Bontempi, Franco
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.389-409
    • /
    • 2014
  • Precast hollow core slabs (HCS) are technically advanced products in the precast concrete industry, widely used in the last years due to their versatility, their multipurpose potential and their low cost. Using three dimensional FEM (Finite Element Method) elements, this study focuses on the stresses induced by the prestressing of steel. In particular the investigation of the spalling crack formation that takes place during prestressing is carried out, since it is important to assure the appropriate necessary margins concerning such stresses. In fact, spalling cracks may spread rapidly towards the web, leading to the detachment of the lower part of the slab. A parametric study takes place, capable of evaluating the influence of the tendon position and of the web width on the spalling stress. Consequently, after an extensive literature review on the topic of soft computing, an optimization of the HCS is performed by means of Genetic Algorithms coupled with 3-D FEM models.

Flexural Behavior of I-Section Prestressed Dual Concrete Beam Using High Performance Steel Fiber Reinforced Concrete (고성능 강섬유보강 콘크리트가 적용된 I-단면 프리스트레스트 이중 콘크리트 보의 휨 거동)

  • Park, Tae-Hyo;Yun, Sung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.162-165
    • /
    • 2006
  • I-section prestressed concrete(I-PC) beam crack due to low tensile strength, may decrease rigidity and structural performance by excessive deflection. In an effort to this problem, in this research, I-section prestressed dual concrete(I-PDC) beam has been proposed, consisting of normal strength concrete in compression zone, and high performance steel fiber reinforced concrete(HPSFRC) with a bottom flange depth in tensile zone. Crack formation and its propagation are controlled by the HPSFRC in I-PDC beam. The initial cracking and service limit loads are increased along with the load carrying capacity and flexural stiffness.

  • PDF