• 제목/요약/키워드: Crack Tip Displacement

검색결과 177건 처리시간 0.025초

STUDY ON DYNAMIC BEHAVIOUR IN 3PB DUCTILE STEEL SPECIMEN APPLIED BY THE IMPACT LOAD

  • HAN M. S.;CHO J. U.;BERGMARK A.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.229-234
    • /
    • 2005
  • The dynamic crack growth in ductile steel is investigated by means of the impact loaded 3 point bending (3PB) specimens. Results from experiments and numerical simulations are compared to each other. A modified 3PB specimen designed with the reduced width at its ends has been developed in order to avoid the initial compressive loading of the crack tip and also to avoid the uncertain boundary conditions at the impact heads. Numerical simulations of the experiments are made by using a finite element method (FEM) code, ABAQUS. The high speed photography is used to obtain the crack growth and the data of the crack tip opening displacement (CTOD). The direct measurements of the relative rotations of two specimen halves are made by using the Moire interference pattern.

직교 이방성체의 동적 응력확대계수에 관한 연구 (II) 등속균열전파 속도하에서 동적모드 III 상태의 응력장, 변위장, 에너지해방률에 관한 연구 (A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(II) A Study on the Stress Field, Displacement Field and Energy Release Rate in the Dynamic Mode III under Constant Crack Propagation Velocity)

  • 이광호;황재석;최선호
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.331-341
    • /
    • 1993
  • The propagating crack problems under dynamic antiplane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems by theoretical method or experimental method in orthotropic material, it is important to know the dynamic stress intensity factor in the vicinity of crack tip. Therefore the dynamic stress field and dynamic displacement field with dynamic stress intensity factor of orthotropic material in mode III were derived. When the crack propagation speed approachs to zero, the dynamic stress components and dynamic displacement components derived in this paper are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determined by using the concept of crack closure energy with the dynamic stresses and dynamic displacements derived in this paper. Finally, the characteristics of crack propagation are studied with the properties of orthotropic material and crack speed. The variation of angle .alpha. between fiber direction and crack propagating direction and crack propagation speed fairly effect on stress component and displacement component in crack tip. The influence of crack propagation speed on the speed on the stress and displacement is greater in the case of .alpha.=90.deg. than in the case of .alpha.=0.deg. and the faster the crack propagation speed, the greater the stress value and displacement value.

Fracture Characteristics of Concrete at Early Ages

  • Lee, Yun;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.191-198
    • /
    • 2006
  • The objective of this study is to examine fracture characteristics of concrete at early ages, i.g. critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of effective-elastic crack model and cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By experimenting with various strengths and ages, load-crack mouth opening curves were obtained, and the results were analyzed by linear elastic fracture mechanics and FEM(finite element method). The results from the test and analysis showed that critical stress intensity factor and facture energy increased while critical crack-tip opening displacement decreased with concrete aging from 1 day to 28 days. Four parameters of bilinear softening curve from 1 day to 28 days were obtained from a numerical analysis. The obtained fracture parameters and bilinear softening curves at early ages from this study are to be used as a fracture criterion and an input data for the finite element analysis of concrete at early ages.

균열선단 부근의 측면함몰로부터 응력삼축성의 결정 방법 (Methods to Evaluate Stress Triaxiality from the Side Necking Near the Crack Tip)

  • 김동학;강기주
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.1021-1028
    • /
    • 2004
  • Kim et al. suggested an experimental method to determine the Q parameter in situ from the out-of-plane displacement and the in-plane strains on the surface of side necking near the crack tip. In this paper, the procedure to evaluate the stress triaxiality near a crack tip such as the Q parameter is to be polished in the details for simplicity and accuracy. That is, Q and hydrostatic stress are determined only from the out-of-plane displacement, but not using in-plane strain, which is hard to measure. And also, the plastic modulus is determined by an alternative way. Through three-dimensional finite element analyses for a standard CT specimen with 20% side-grooves, the validities of the new procedures are examined in comparison to the old ones. The effect of location where the displacements are measured to determine the stress triaxiality is explored.

Numerical analysis of the Influence of the presence of disbond region in adhesive layer on the stress intensity factors (SIF) and crack opening displacement (COD) in plates repaired with a composite patch

  • Benchiha, Aicha;Madani, Kouider;Touzain, Sebastien;Feaugas, Xavier;Ratwani, Mohan
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.951-962
    • /
    • 2016
  • The determination of the stress intensity factor at the crack tip is one of the most widely used methods to predict the fatigue life of aircraft structures. This prediction is more complicated for repaired cracks with bonded composite patch. This study is used to compute the stress intensity factor (SIF) and crack opening displacement (COD) for cracks repaired with single and double-sided composite patches. The effect of the presence of disbond region in adhesive at the crack was taken into consideration. The results show that there is a considerable reduction in the asymptotic value of the stress-intensity factors and the crack opening displacement at the crack tip. The use of a double-sided patch suppresses the bending effect due to the eccentricity of the patch on one side only.

초기재령 콘크리트의 파괴특성 (Fracture Characteristics of Concrete at Early Ages)

  • 이윤;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.215-220
    • /
    • 2001
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By varying strength and age, load-crack mouth opening displacement curves were obtained and the results were analyzed by linear elastic fracture mechanics. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete age from 1 day to 28 days. The obtained fracture parameters at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

  • PDF

밀도변화가 직교이방성함수구배재료에서 전파하는 모드 III 균열선단의 응력 및 변위장에 미치는 영향 (Influence of Density Variation on Stress and Displacement Fields at a Propagating Mode-III Crack Tip in Orthotropic Functionally Graded Materials)

  • 이광호
    • 대한기계학회논문집A
    • /
    • 제35권9호
    • /
    • pp.1051-1061
    • /
    • 2011
  • 밀도의 변화가 직교이방성 함수구배재료에서 전파하는 모드 III 균열선단부근의 응력 및 변위장에 미치는 영향에 대하여 연구하였다. 본 연구에서 균열은 물성치의 구배방향과 수직하여 전파하며 다음과 같은 3가지 종류의 함수구배재료에서 밀도변화가 균열선단의 응력장 및 변위장에 미치는 영향에 대하여 연구하였다. (1) 탄성변화 없이 밀도만 변화하는 경우 (2) 밀도의 변화방향과 탄성변화방향이 서로 반대인 경우 (3) 밀도의 변화방향과 탄성변화방향이 동일한 경우이다. 이와 같은 경우에 대한 연구를 위하여 균열의 응력장 및 변위장이 개발되었으며 또한 전파하는 균열에 대한 동적응력확대계수에 대하여도 연구하였다. 균열전파속도가 느린 경우에는 밀도의 변화가 균열선단부근의 응력 및 변위장에 미치는 영향은 미미하나 균열전파속도가 빠른 경우에는 그 영향은 매우 크다.

화상처리법을 이용한 A533B강의 진전균열특이장 평가 (Evaluationof Growing Crack-Tip Singularity in A533B Steel by Image Processing Technique)

  • 표창률;김영진
    • 대한기계학회논문집A
    • /
    • 제21권1호
    • /
    • pp.124-132
    • /
    • 1997
  • This paper describes an experimental and numerical study on growing ductile crack-tip behaviors. The hybrid experimental and numerical method by means of a computer image processign technique, was applied to the analysis of both base metal and weld metal CT specimens. In the weld metal specimen, the initial crack-tip was placed in front of fusion line, and the crack orientation was perpendicular to it. Finite element analysis of crack growth behaviors in both base and weld matal specimens made of A533B Class 1 steel were also performed to examine the effects of weldment on near crack-tip fields. a series of experimental studies on crack-tip behaviors have clearly shown the qualitative effects of material properties, especially a hardening exponent. The experimental and numerical results have also shown that weldment does not affect displacement and strain fields near a crack-tip while a stress field is influenced by the difference between yield stresses of both base and weld metals.

X방향을 따라 선형적 함수구배인 재료에서 전파하는 균열의 응력장과 변위장 (Stress and Displacement Fields for a Propagating Crack in a Linear Functionally Gradient Material Along X Direction)

  • 이광호;조상봉
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1753-1763
    • /
    • 2002
  • Stress and displacement fields for a propagating crack in a functionally gradient material (FGM) which has shear modulus as $\mu$=$\mu$$\_$0/(1+ζX) are derived. The equations of motion in FGM which is nonhomogeneous material are different from those of homogeneous material. The stress intensity factors in stress fields have influence on odd terms of γ$\^$n/2-1/(n=1,3,5,...,) but stress at crack tip only retains term of γ$\^$-1/2/, where the γ is a radius of cylindrical coordinates centered at crack tip. When the FGM constant ζ is zero or γ→0, the fields for FGM are almost same as the those for isotropic material.

An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

  • Lee, Jin-Sung;You, Won-Hyo;Yoo, Chang-Hyuk;Kim, Kyung-Su;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.580-597
    • /
    • 2013
  • Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low ($-100^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083-O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.