DOI QR코드

DOI QR Code

Numerical analysis of the Influence of the presence of disbond region in adhesive layer on the stress intensity factors (SIF) and crack opening displacement (COD) in plates repaired with a composite patch

  • Benchiha, Aicha (LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Madani, Kouider (LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Touzain, Sebastien (La Rochelle University, Laboratoire des sciences pour l'ingenieur pour l'environnement (LASIE)) ;
  • Feaugas, Xavier (La Rochelle University, Laboratoire des sciences pour l'ingenieur pour l'environnement (LASIE)) ;
  • Ratwani, Mohan (R-Tec)
  • Received : 2015.09.27
  • Accepted : 2015.12.25
  • Published : 2016.03.20

Abstract

The determination of the stress intensity factor at the crack tip is one of the most widely used methods to predict the fatigue life of aircraft structures. This prediction is more complicated for repaired cracks with bonded composite patch. This study is used to compute the stress intensity factor (SIF) and crack opening displacement (COD) for cracks repaired with single and double-sided composite patches. The effect of the presence of disbond region in adhesive at the crack was taken into consideration. The results show that there is a considerable reduction in the asymptotic value of the stress-intensity factors and the crack opening displacement at the crack tip. The use of a double-sided patch suppresses the bending effect due to the eccentricity of the patch on one side only.

Keywords

References

  1. Albedah, A., Bachir Bouiadjra, B., Mhamdia, R., Benyahia, F. and Es-Saheb, M. (2011), "Comparison between double and single sided bonded composite repair with circular shape", Mater. Des., 32(2), 996-1000. https://doi.org/10.1016/j.matdes.2010.08.022
  2. Belhouari, M., Bachir Bouiadjra, B., Megueni, A. and Kaddouri, K. (2004), "Comparison of double and single bonded repairs to symmetric composite structures: a numerical analysis", Compos. Struct., 65(1), 47-53. https://doi.org/10.1016/j.compstruct.2003.10.005
  3. Chen, J.F., Evgeny, V., Morozov, K.S. (2014), "Progressive failure analysis of perforated aluminium/CFRP fibre metal laminates using a combined elastoplastic damage model and including delamination effects", Compos. Struct., 114, 64-79. https://doi.org/10.1016/j.compstruct.2014.03.046
  4. Chukwujekwu Okafor, A. and Bhogapurapu, H. (2006), "Design and analysis of adhesively bonded thick composite patchrepair of corrosion grind-out and cracks on 2024 T3 clad aluminum aging aircraft structures", Compos. Struct., 76(1-2), 138-150. https://doi.org/10.1016/j.compstruct.2006.06.020
  5. Da Silva, L.F.M., Ochsner, A. and Adams, R.D. (2011), Handbook of Adhesion Technology, Springer-Verlag, BerlinHeidelberg, Germany.
  6. Lee, W.Y. and Lee, J.J. (2004), "Successive 3D FE analysis technique for characterization offatigue crack growth behavior in composite-repaired aluminum plate", Compos. Struct., 66(1-4), 513-520. https://doi.org/10.1016/j.compstruct.2004.04.074
  7. Madani, K., Touzain, S., Feaugas, X., Benguediab, M. and Ratwani, M. (2008), "Numerical analysis for the determination of the stress intensity factors and crack opening displacements in plates repaired with single and double composite patches", Comput. Mater. Sci., 42(3), 385-393. https://doi.org/10.1016/j.commatsci.2007.08.010
  8. Madani, K., Touzain, S., Feaugas, X., Benguediab, M. and Ratwani, M. (2009), "Stress distribution in a 2024-T3 aluminum plate with a circular notch, repaired by a graphite/epoxy composite patch", Int. J. Adhes. Adhes., 29(3), 225-233. https://doi.org/10.1016/j.ijadhadh.2008.05.004
  9. Megueni, A., Tounsi, A., Bachir Bouiadjra, B. and Serier, B. (2003), "The effect of a bonded hygrothermal aged composite patch on the stress intensity factor for repairing cracked metallic structures", Compos. Struct., 62(2), 171-176. https://doi.org/10.1016/S0263-8223(03)00112-0
  10. Mokhtari, M., Madani, K., Belhouari, M., Touzain, S., Feaugas, X. Ratwani, M. (2013), "Effects of composite adherend properties on stresses in double lap bonded joints", Mater. Des., 44(), 633-639. https://doi.org/10.1016/j.matdes.2012.08.001
  11. Ouinas, D., Bouiadjra, B.B. and Serier, B. (2007), "The effects of disbonds on the stress intensity factor of aluminium panels repaired using composite materials", Compos. Struct., 78(2), 278-284. https://doi.org/10.1016/j.compstruct.2005.10.012
  12. Ramji, M., Srilakshmi, R. and Bhanu Prakash, M. (2013), "Towards optimization of patch shape on the performance of bonded composite repair using FEM", Compos.: Part B, 45(1), 710-720. https://doi.org/10.1016/j.compositesb.2012.07.049
  13. Ratwani, M.M., Kieboom, O.T. and Heslehurst, R.B. (2006), "Crack opening displacement in plate with bonded repair patch", Fatig. Fract. Eng. Mater. Struct., 29(6), 425-430. https://doi.org/10.1111/j.1460-2695.2006.01010.x
  14. Rezgani, L., Bachir Bouiadjra, B., Belhouari, M., Madani, K., Serier, B. and Feaugas, X. (2010), "Effect of composite hygrothermal aging on the SIF variation in bonded composite repair of aircraft structures", J. Reinf. Plast. Compos., 29(24), 3631-3636. https://doi.org/10.1177/0731684410378544
  15. Seo, D.C. and Lee, J.J. (2002), "Fatigue crack growth behavior of cracked aluminum plate repaired with composite patch", Compos. Struct., 57, 323-330. https://doi.org/10.1016/S0263-8223(02)00095-8

Cited by

  1. Experimental and numerical disbond localization analyses of a notched plate repaired with a CFRP patch vol.63, pp.3, 2016, https://doi.org/10.12989/sem.2017.63.3.361
  2. Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate vol.4, pp.6, 2016, https://doi.org/10.12989/aas.2017.4.6.679
  3. Analysis of various composite patches effect on mechanical properties of notched Al-Mg plate vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.685
  4. Damage of bonded, riveted and hybrid (bonded/riveted) joints, Experimental and numerical study using CZM and XFEM methods vol.5, pp.5, 2016, https://doi.org/10.12989/aas.2018.5.5.595
  5. Elastic analysis of arbitrary shape plates using Meshless local Petrov-Galerkin method vol.27, pp.4, 2016, https://doi.org/10.12989/was.2018.27.4.235
  6. Buckling response of smart plates reinforced by nanoparticles utilizing analytical method vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.001
  7. Electro-thermo-mechanical stress analysis of smart sandwich cylindrical shell vol.40, pp.5, 2016, https://doi.org/10.12989/scs.2021.40.5.723
  8. Stress Analysis in Damaged Pipeline with Composite Coating vol.11, pp.22, 2016, https://doi.org/10.3390/app112210676