• Title/Summary/Keyword: Crack Position

Search Result 232, Processing Time 0.024 seconds

The Relationship between Fracture Toughness and Constraint Effect using Crack Tip Opening Displacement (균열선단 개구변위를 이용한 파괴인성 평가와 구속효과와의 관계)

  • Han, Min-Su;Jang, Seok-Ki;Lee, Don-Chool;Kim, Seong-Jong;Park, Jong-Seek
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.91-92
    • /
    • 2006
  • For the CT specimen of 25.4mm thickness SS400 steel, the fracture toughness and the magnitude of constraint effect, $A_2$ on the non-linear elastoplastic fracture behaviors were experimentally estimated by crack tip opening displacement. In order to estimate constraint effect, displacement measurement position near crack front should be the existed within plastic region. But it is found that the displacement measurement positions by the ${\delta}_5$ method are in elastic region at crack growth initiation. Hence the estimate of constraint effect, $A_2$ by the ${\delta}_5$ method was not reliable.

  • PDF

Measurements of Sub- and Super Harmonic Waves at the Interfaces of Fatigue-Cracked CT Specimen

  • Jeong, Hyun-Jo;Barnard, Dan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Nonlinear harmonic waves generated at cracked interfaces are investigated both experimentally and theoretically. A compact tension specimen is fabricated and the amplitude of transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible a broadband Lithium Niobate ($LiNbO_3$) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities which are manifested as harmonies in the power spectrum of the received signal. The first subharmonic (f/2) and the second harmonic (2f) waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior a partially closed crack is modeled by planar half interfaces that can account for crack parameters such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreements with the experimental results.

A basic study on the standardization of epoxy injection in cracks of tunnel concrete structures (터널 콘크리트 구조물 균열에 에폭시 주입의 표준화에 대한 기초적 연구)

  • Baek Jong-Myeong;Jang Seog-Jae
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1235-1240
    • /
    • 2005
  • In this status no inspection standard of quality in repair of present concrete structure has a problem to repair for simple experience. In this paper for this problem improvement, it made an analysis of relation to injection quantity of crack width, injection time of crack width, injection pressure of crack width, injection pressure and time, injection quantity of structural size, injection quantity of structural individual crack position, injection time about crack width. and structural thickness. The data gained in analysis result be judged that it will help in systematic quality control about concrete structural repair.

  • PDF

A study on the fatigue life and the change of the strain during the fatigue fracture on the fillet welded specimens of SM490A (SM490A 재질 필렛 용접시편의 피로수명과 용접부 피로파단시 스트레인 변화 연구)

  • 김재훈;구병춘
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.345-349
    • /
    • 2004
  • This study investigates the fatigue lives of SM490A material(base metal) specimens and fillet weld specimens, which are made same material and weld method for the railway vehicle. These fatigue lives have a difference, the fatigue lives of weld specimen are shorter than those of base metal. We measured the strains on the weld positions of the specimens during the fatigue test for investigation of crack initiation and crack growth. In these result, we could find the information of the crack initiation position on weld bead and the history of crack growth. Also we knew that the fatigue crack initiation cycles and the changes of the strain which were affected the fractured surface roughness and morphology.

A Study on the Dynamic Characteristics of a Composite Beam with a Transverse Open Crack (크랙이 존재하는 복합재료 보의 동적 특성 연구)

  • 하태완;송오섭
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1019-1028
    • /
    • 1999
  • Free vibration characteristics of cantilevered laminated composite beams with a transverse non0propagating open carck are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The open crack is modelled as an equivalent rotational spring whose spring constant is calculated on the basis of fracture mechanics of composite material structures. Governing equations of a composite beam with a open crack are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect. the effects of various parameters such as the ply angle, fiber volume fraction, crack depth, crack position and transverse shear on the free vibration characteristics of the beam with a crack is highlighted. The numerical results show that the natural frequencies obtained from Timoshenko beam theory are always lower than those from Euler beam theory. The presence of intrinsic cracks in anisotropic composite beams modifies the flexibility and in turn free vibration characteristics of the structures. It is revealed that non-destructive crack detection is possible by analyzing the free vibration responses of a cracked beam.

  • PDF

Crack identification in post-buckled beam-type structures

  • Moradi, Shapour;Moghadam, Peyman Jamshidi
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1233-1252
    • /
    • 2015
  • This study investigates the problem of crack detection in post-buckled beam-type structures. The beam under the axial compressive force has a crack, assumed to be open and through the width. The crack, which is modeled by a massless rotational spring, divides the beam into two segments. The crack detection is considered as an optimization problem, and the weighted sum of the squared errors between the measured and computed natural frequencies is minimized by the bees algorithm. To find the natural frequencies, the governing nonlinear equations of motion for the post-buckled state are first derived. The solution of the nonlinear differential equations of the two segments consists of static and dynamic parts. The differential quadrature method along with an arc length strategy is used to solve the static part, while the same method is utilized for the solution of the linearized dynamic part and the extraction of the natural frequencies of the cracked beam. The investigation includes several numerical as well as experimental case studies on the post-buckled simply supported and clamped-clamped beams having open cracks. The results show that several parameters such as the amount of applied compressive force and boundary conditions influences the outcome of the crack detection scheme. The identification results also show that the crack position and depth can be predicted well by the presented method.

A Basic Study on the Standardization of Epoxy Injection on Concrete Structure Crack (콘크리트 구조물 균열에 에폭시 주입의 표준화를 위한 기초적 연구)

  • Baek, Jong-Myeong;Jang, Seog-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.115-122
    • /
    • 2006
  • Repairing concrete structures depended on only technician' experience without quality test standards would have problems. For solving those problems, this paper has analyzed the relations between injection quantify and crack width, injection time and crack width, injection pressure and crack width, injection pressure/time and crack width, injection quantity and structure size, injection quantify and individual crack Position, injection time and crack width/structure thickness. The data gained from this analysis would be helpful for systematic quality control of repairing concrete structures.

Seismic performance of precast joint in assembled monolithic station: effect of assembled seam shape and position

  • Liu, Hongtao;Du, Xiuli
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.611-621
    • /
    • 2019
  • Precast concrete structure has many advantages, but the assembled seam will affect potentially the overall seismic performance of structure. Based on the sidewall joint located in the bottom of assembled monolithic subway station, the main objectives of this study are, on one hand to present an experimental campaign on the seismic behavior of precast sidewall joint (PWJ) and cast-in-place sidewall joint (CWJ) subjected to low-cycle repeated loading, and on the other hand to explore the effect of shape and position of assembled seam on load carrying capacity and crack width of precast sidewall joint. Two full-scale specimens were designed and tested. The important index of failure pattern, loading carrying capacity, deformation performance and crack width were evaluated and compared. Based on the test results, a series of different height and variably-shape of assembled seam of precast sidewall joint were considered. The test and numerical investigations indicate that, (1) the carrying capacity and deformation capacity of precast sidewall and cast-in-place sidewall were very similar, but the crack failure pattern, bending deformation and shearing deformation in the plastic hinge zone were different obviously; (2) the influence of the assembled seam should be considered when precast underground structures located in the aquifer water-bearing stratum; (3) the optimal assembled seam shape and position can be suggested for the design of precast underground concrete structures according to the analysis results.

An Experimental Study on Crack Growth in Rock-like Material under Monotinic and Cyclic Loading (단조증가 및 반복하중 하에서 모사 암석 시료의 균열 성장에 관한 실험적 연구)

  • Ko, Tae-Young;Lee, Seung-Cheol;Kim, Dong-Keun;Choi, Young-Tae
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.307-319
    • /
    • 2011
  • Cyclic loading due to traffic, excavation and blasting causes microcrack growth in rocks over long period of time, and this type of loading often causes rock to fail at a lower stress than its monotonically determined strength. Thus, the crack growth and coalescence under cyclic loading are important for the long-term stability problems. In this research, experiments using gypsum as a model material for rock are carried out to investigate crack propagation and coalescence under monotonic and cyclic loading. Both monotonic and cyclic tests have a similar wing crack initiation position, wing crack initiation angle, cracking sequence and coalescence type. Three types of crack coalescence were observed; Type I, II and III. Type I coalescence occurs due to a shear crack and Type II coalescence occurs through one wing or tension crack. For Type III, coalescence occurs through two wing or tension cracks. Fatigue cracks appear in cyclic tests. Two types of fatigue crack initiation directions, coplanar and horizontal directions, are observed.

Evaluation of stress intensity factor for a crack normal to bimaterial interface using cubic isoparametric finite elements (3차 등매개 유한요소를 이용한 이종재료 접합면에 수직인 균열의 응력확대계수 평가)

  • Lim, Won-Gyun;Jeong, Gyu-Cheol;Song, Chi-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.206-214
    • /
    • 1998
  • When a crack meets bimaterial interface stress singularity depends on the elastic constants of the adjacent materials. In the present study we are going to describe the finite element formulation for problems with a crack to be embedded in the stiffer material$({\mu}_2/{\mu}_1)$. The cubic isoparametric singular element, represented by adequately shifting the mid-side nodes adjacent to the crack tip is constructed to enclose the crack tip. An alternative method to obtain the optimal position of the mid-side nodes of cubic isoparametric elements is presented. In addition, a proper definition for the stress intensity factors of a crack normal to bimaterial interface is provided. It is based upon near a tip displacement solutions. Models for numerical analysis are two dimensional elastic bodies with a through crack under plain strain. The results obtained are compared with the previous solutions.