• 제목/요약/키워드: Crack Position

검색결과 232건 처리시간 0.023초

다양한 형상의 콘크리트 표면 실링을 위한 로봇 시스템 (A Sealing Robot System for Cracks on Concrete Surfaces with Force Tracking Controller)

  • 조철주;임계영
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.374-381
    • /
    • 2016
  • The sealing technique is widely used for repairing the cracks on the surface of concrete and preventing their expansion in the future. However, it is difficult to ensure the safety of the workers when sealing large structures in inconvenient working environments. This paper presents the development of a sealing robot system to seal various shapes of concrete surface in rough conditions for a long time. If the robot can maintain the desired contact force, the cracks can be completely sealed. An impedance force tracking controller with slope estimator is proposed to calculate the surface slope in real time using the robot position. It predicts the next point in order to prevent the robot from disengaging from the contact surface owing to quick slope changes. The proposed method has been verified by experimental results.

Gross dynamic failure of toppling block structures

  • Wilson, James F.
    • Structural Engineering and Mechanics
    • /
    • 제8권5호
    • /
    • pp.491-504
    • /
    • 1999
  • The initiation of toppling is explored for a uniform stack of blocks that rotates slowly about its mid-base. As the stack passes through its vertical position ($\theta$=0), it is in free-fall rotation, and a critical inclination angle ${\theta}_c$ is reached at which the toppling stack "fails" or begins to crack or separate. For tall stacks (high aspect ratios), two modes of failure are hypothesized, for which the dynamic failure analyses are shown to correlate with experimental results. These block failure modes are similar to those observed for tall, toppling masonry structures with weak binding material between their brick or stone blocks.

강섬유 보강 터널 라이닝 콘크리트의 성능 평가 (Performance Estimation of Tunnel Lining Concrete Reinforced Steel Fiber)

  • 전찬기;김수만;이명수;이종은;전중규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.579-582
    • /
    • 2005
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to bridging cracks, steel fiber reinforcement concrete(SFRC) has better crack properties than that of reinforced concrete. In this study, mechanical behaviour of a tunnel lining was examined by model tests. The model tests were carried out under various conditions taking different loading shapes, thicknesses and leakage of lining, and volume content of steel fiber. From these model test, the cracking load, the failure load, defection and cracking position and type were examined and the characteristics of deformation and failure for tunnel lining were estimated and researched.

  • PDF

매립형 철골합성구조의 부등건조수축에 따른 내부강재구속효과에 관한 연구 (Embeded-Steel Restraining Effects due to Differential Drying Shrinkage in SRC(Steel Reinforced Concrete ) Structures)

  • 조병환;김성호;김영진;고상윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.303-308
    • /
    • 2000
  • During the past few decades, several composite steel-concrete structural systems have been used and the demand of SRC (Steel Reinforced Concrete) structure increases on the construction of coping structures. But drying shrinking of concrete which is not uniform and the additional restraining effects of encased steel in concrete may cause the crack which leads to harmful damage to structure. In this study, specimens were made to show the restraining effects of embeded-steel in concrete and the differential drying shrinkage strains at various position of concrete were measured and analysed by Compensation Line Method. The results showed that there were remarkable difference in the drying shrinkage according to 속 depth of the concrete, and the tensile stress of the concrete near to encased steel showed the significant amount of stress contrary to 속 specimen which has no embeded-steel.

  • PDF

고강도 RC보의 탄소섬유쉬트 보강에 대한 연구 (A Study on Carbon Fiber Sheet Rehabilitation of Reinforced High Strength Concrete Beams)

  • 김종효;곽계환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.450-455
    • /
    • 1997
  • In recent years the research and development about the new material proceeds rapidly and actively in building industry. We are concerned with high-strength concrete as a new material. As the building structure becomes bigger, higher and more specialized, so does the demand of material and member with high strength for building expands greatly. In the future, we will quite need to research repair and rehabilitation to make high strength concrete structural building for our safe. So, I did an study on carbon fiber sheet rehabilitation(CFSR) of reinforced high strength concrete beams. The carbon fiber reinforced plastic(CFRP) bonding method is widely used for reinforcing the existing concrete structure among the various methods. The test results indicate that CFS is very effective for strengthening the damaged beams and controlling deflections of the repaired beams. When carbon fiber sheet rehabilitation of reinforced high strength concrete beams happened diagonal crack, the increase in the number of CFS layer didn't effect the increase in strength of beams. Also, by changing the CFS stick position gave diversified ultimate load in CFSR beams.

  • PDF

VES-LMC의 보수·보강 두께에 따른 RC보의 휨거동 특성 (Flexural Bchavior of RC Beam according to Thickness Repaired and Rehabilitated with VES-LMC)

  • 김성권;이봉학
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.101-110
    • /
    • 2006
  • The purpose of this study was to investigate the flexural, interfacial behavior, crack propagation, nonlinear behavior, effect repaired and rehabilitated with VES-LMC using RC beam with 4-point-loading test. The results were following: The test result showed that repair and rehabilitation effect increased as its depth increased, which was verified by the increase of flexural stiffness. More than 40% of stiffness was improved when the depth of repair was up to steel position. However, there was a little difference between 8cm and 12cm repaired beam. This means the repair depth must be considered. The interfacial behavior data showed that the repaired or rehabilitated beams had a little relative displacement. This means that two materials behave comparatively acting together. This suggested that interface treatment were one of the most important jobs in composite beams.

  • PDF

Fracture Analysis of Electronic IC Package in Reflow Soldering Process

  • Yang, Ji-Hyuck;Lee, Kang-Yong;Lee, Taek sung;Zhao, She-Xu
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.357-369
    • /
    • 2004
  • The purposes of the paper are to analyze the fracture phenomenon by delamination and cracking when the encapsulant of plastic IC package with polyimide coating shows viscoelastic behavior under hygrothermal loading in the IR soldering process and to suggest more reliable design conditions by the approaches of stress analysis and fracture mechanics. The model is the plastic SOJ package with the polyimide coating surrounding chip and dimpled diepad. On the package without cracks, the optimum position and thickness of polyimide coating to decrease the maximum differences of strains at the bonding surfaces of parts of the package are studied. For the model delaminated fully between the chip and the dimpled diepad, C(t)-integral values are calculated for the various design variables. Finally, the optimal values of design variables to depress the delamination and crack growth in the plastic IC package are obtained.

스트레인게이지법을 이용한 동적응력확대계수 평가 (Evaluation on dynamic stress intensity factor using strain gage method)

  • 이현철;김덕희;김재훈;문순일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.304-309
    • /
    • 2000
  • Strain gage method is used to evaluate the mode I dynamic stress intensity factor of marging steel(18Ni) and titanium alloy(Ti-6A1-4V). To decide the best strain gage position on specimen, static fracture toughness test was performed. Then instrumented charpy impact test and dynamic tensile test was performed by using strain gage method for evlauating dynamic stress intensity factor. Strain gage signals on the crack tip region are used to calculate the stress intensity factors. It is found that strain gage method is more useful than method by using load which is obtained from impact tup to assess dynamic characteristics such as dynamic stress intensity factor.

  • PDF

Nondestmctive Evaluation of Cracks in Metal Plates by using SQUID Gradiometer

  • 황윤석;김진태;이순걸;박용기
    • Progress in Superconductivity
    • /
    • 제3권2호
    • /
    • pp.159-162
    • /
    • 2002
  • We have detected cracks inside multi-layer metal sheets with nondestructive evaluation system consisting of SQUID gradiometer. Double D-shape coil was carefully designed with computer simulation for spatial distribution of magnetic field. It was aligned and placed in between SQUID and metal sheets in order to reduce the field effect to SQUID and to maximize eddy current in the sheets. The metal plate in bottom of the metal stack contained artificial cracks which were scanned by an X-Y scanning system. The information of crack position and size could be estimated by analysis of SQUID signal. Details of the results will be discussed .

  • PDF

PZT 세라믹스의 강도에 미치는 내부응력의 영향 (Effect of internal Stress on the Strength of PZT Cermics)

  • 태원필;윤여범;김송희
    • 한국세라믹학회지
    • /
    • 제33권1호
    • /
    • pp.49-55
    • /
    • 1996
  • The aim of this study is to investigate the change of bending strength and fatigue strength in the unpoled and poled Pb(Zr, Ti)O3 ferroelectrics of tetragonal morphotropic phase boundary (MPM) and rhombohedral com-position in terms of internal stress which is measured by XRD method. Before poling treatment the highest bending strength was found in rhombohedral composition. After poling treatment the bending strength decreas-ed in all compositions but it decreased most remarkably in tetragonal composition. The most prominent de-crease of bending strength after poling treatment in tetragonal was attributed to the occurrence of microcracks due to highanisotropic internal stress around grain boundary which was induced of bending strength after poling in MPB and rhombohedral composition was not due to the occurrence of microcracks but to the increase in tensile internal stress perpendicular to the direction of crack propagation by domain alignment. Fatigue strength was higher before poling treatment than after poling treatment for various compositions.

  • PDF