• Title/Summary/Keyword: Crack Initiation Load

Search Result 189, Processing Time 0.029 seconds

A Prediction of Crack Growth Path by Boundary Element Method (경계요소법(境界要素法)에 의한 균열 진전경로(進展經路)의 예측)

  • S.C.,Kim;W.K.,Lim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.39-46
    • /
    • 1988
  • The purpose of this paper is to apply the boundary element method to predict the crack growth path. The quarter point element with traction singularity at the crack tip is applied to compact tension type specimens and two inclined slit problems under compression load. The maximum stress criterion which was originally derived for the crack initiation is extended to the analysis of the crack propagation. The predicted crack paths with 1/4 crack growth increment of initial crack length agree quite well with experimental results. It is found that the computed crack path of the boundary element analysis is not mainly affected by the crack increment length.

  • PDF

Failure Mode and Fracture Behavior Evaluation of Pipes with Local Wall Thinning Subjected to Bending Load (감육배관의 굽힘하중에 의한 손상모드와 파괴거동 평가)

  • Ahn, Seok-Hwan;Nam, Ki-Woo;Kim, Seon-Jin;Kim, Jin-Hwan;Kim, Hyun-Soo;Do, Jae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.8-17
    • /
    • 2003
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear Power Plant. In Pipes of energy Plants, sometimes, the local wall thinning may result from severe erosion-corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization. crack initiation/growth after ovalization, local buckling and crack initiation/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated.

A Study on the Thermo-Mechanical Fatigue Loading for Time Reduction in Fabricating an Artificial Cracked Specimen (열-기계적 피로하중을 받는 균열시편 제작시간 단축에 관한 연구)

  • Lee, Gyu-Beom;Choi, Joo-Ho;An, Dae-Hwan;Lee, Bo-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • In the nuclear power plant, early detection of fatigue crack by non-destructive test (NDT) equipment due to the thermal cyclic load is very important in terms of strict safety regulation. To this end, many efforts are exerted to the fabrication of artificial cracked specimen for practicing engineers in the NDT company. The crack of this kind, however, cannot be made by conventional machining, but should be made under thermal cyclic load that is close to the in-situ condition, which takes tremendous time due to the repetition. In this study, thermal loading condition is investigated to minimize the time for fabricating the cracked specimen using simulation technique which predicts the crack initiation and propagation behavior. Simulation and experiment are conducted under an initial assumed condition for validation purpose. A number of simulations are conducted next under a variety of heating and cooling conditions, from which the best solution to achieve minimum time for crack with wanted size is found. In the simulation, general purpose software ANSYS is used for the stress analysis, MATLAB is used to compute crack initiation life, and ZENCRACK, which is special purpose software for crack growth prediction, is used to compute crack propagation life. As a result of the study, the time for the crack to reach the size of 1mm is predicted from the 418 hours at the initial condition to the 319 hours at the optimum condition, which is about 24% reduction.

Experimental Study on Fatigue Crack Initiation and Propagation due to Fretting Damage in Press-fitted Shaft (압입축에 발생하는 프레팅 피로균열 발생 및 진전 특성 실험)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.701-709
    • /
    • 2007
  • To clarify the characteristics of surface damage due to fretting in press-fitted shaft, experimental methods were applied to small scale specimen with different bending load condition. Fatigue tests and interrupted fatigue tests of press-fitted specimen were carried out by rotate bending fatigue test. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that small fatigue cracks are nucleated early in life regardless of bending stress, and thus the most portion of fatigue life on press fits can be considered to be crack propagation process. Most of surface cracks are initiated near the contact edge, and multiple cracks are nucleated and interconnected. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. It is thus suggested that the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in press fits.

The Mixed Mode Fracture Using Concrete Disk (콘크리트 디스크를 이용한 혼합모드 파괴)

  • 진치섭;김희성;정진호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.63-69
    • /
    • 2000
  • This study investigates a new method of using a concrete disk to calculate stress intensity factor (SIF) for mixed mode cases. The results indicate that the disk method is more accurate than three point bending test (TPB) in obtaining correct SIF values for mixed mode fracture propagation. Stress intensity factors $K_{I}$ and $K_{II}$ are calculated using a center notched disk subjected to splitting load. The notch angle is calculated by finite element (FEM). Fracture toughness $K_\textsc{k}$ of the concrete is obtained from the load intensities at the initiation of crack propagation. According to the finite element analysis(FEA) and disk test, the results show that mode I and mixed mode cracks propagate toward the directions of crack face and loading point, respectively. The results from FEA with maximum stress theory compare well with the experimental date. Unlike TPB method where an accurate fracture toughness value is difficult to obtain due to the irregular shape of load deflection curve and delayed final crack propagation (following slow stable cracking). fracture toughness value is easily measured in the disk test from the crack initial load. Therefore, it is safe to conclude that disk method is more advantageous than TPB method in analyzing combined mode fracture problems.

Evaluation of Influence on the Fatigue Strength of Residual Stresses at the Welded Toe of Welded Structure. (용접구조물 요접토우부의 잔류응력이 피로강도에 미치는 영향 평가)

  • 차용훈;김하식;김일수;성백섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.7-13
    • /
    • 2001
  • This Study is to investigate the influence of weld residual stresses on the fatigue crack growth behaviors in pressure ves-sel reinforcement. In order to perform this study, the automatically welded specimens are prepared. The material is ASTM A516 grade 60 steel used in pressure vessel mainly. For pad-on-plate of skip welding continuous welding and PWHT specimen, fatigue crack initiation is generally initiat-ed at weld starting and end toe zone, and ruptured at weld starting toe zone, Fatigue life if pad-on-plate continuous speci-men is increased more than that of pad-on-plate skip fillet welding specimene about 85% under low load, about 20% under high load, and decreased than that of two-pad continuous welding specimen about 85%. In da/dN-$\Delta$ Κ curve under low load, pad-on-plate skip fillet welding specimen showed retardation on the initial crack, and the fatigue crack growth rate at the low region of $\Delta$Κ greater specimene E(3.8{\times}10^{-6}$mm/cycle). And the fatigue life of welding specimen was smaller than that of PWHT specimen.

  • PDF

Effects of $K_{II}$ on fatigue crack propagation behavior of wedzone in generally rolled steel for marine structure (박용 구조물용 일반압연강 용접부의 피로균열 전파거동에 미치는 $K_{II}$의 영향)

  • 한문식;김상철
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.43-55
    • /
    • 1988
  • An experimental study was carried out to identify the fatigue fractue behavior of weld zone in generally rolled steel for marine structure. The bending an shear loads were applied simultaneously on the specimens to simulate real load condition for marine structure. The effect of the stress intensity factor under mode I with II loading condition on the initiation and the propagation of a crack were investigated, with particular emphaiss on mode II. When the $K_{II}$ stress intensiy factor in mode II was applied under mode I load condition, the growth behavior of a crack seems to be affected mainly by the anisotropic characteristic of materials. Especially, when the crack was located in and near the weld zone and parallel to th weld line, the propagation behaviour was turned out to be quite different from that of the base metal along the direction transverse to the weld line. In general, the propagation veiocity of the cracks in and near the weld zone was found to be slower that the velocity in base metal.

  • PDF

Study on the Characteristics of the Corrosion Fatigue Crack Propagation of Al-Alloy used for the Shipbuilding (선박용 알루미늄 합금재의 부식피로구열 진전특성에 관한 연구)

  • Im, U-Jo;Lee, Jong-Rak;Lee, Jin-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.2
    • /
    • pp.94-100
    • /
    • 1988
  • Recently with the rapid development in marine and shipbuilding industries such as marine structures, ship, and chemical plants, there occurs much interest in the study of corrosion fatigue characteristics was closed up an important role in mechanical design. In this study, the 5086 Al-Alloy was tested by used of a rotary bending fatigue tester and was investigated under the environments of various specific resistance and air. The specific resistance, as a corrosion environment, was changed 15, 20, 25 and 5000$\Omega$.cm. The corrosion fatigue crack initiation sensitivity was quantitatively inspected for 5086 Al-Alloy in the various specific resistance. The experimental constants of Paris rule were examined in the various specific resistances, and the influences of load and corrosion with affect the crack growth rate were compared with. Main results obtained are as follows: (1) Number of stress cycles to corrosion fatigue crack initiation delaies and corrosion fatigue crack initiation sensitivity decreases with the increasing for the specific resistance. (2) The experimental constant m of Paris rule decreases with the decreasing for specific resistance. Hence the effect of corrosion is more susceptible than that of stress intensity factor. (3) The corrosion fatigue crack of 5086 Aluminium Alloy appears intergranular fracture. (4) Corrosion sensitivity is decreased with the increasing stress intensity factor and is nearly uniform when stress intensity factor is over 40kg.mm super(-3/2)

  • PDF

Study on fracture characteristics of reinforced concrete wedge splitting tests

  • HU, Shaowei;XU, Aiqing;HU, Xin;YIN, Yangyang
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.337-354
    • /
    • 2016
  • To study the influence on fracture properties of reinforced concrete wedge splitting test specimens by the addition of reinforcement, and the restriction of steel bars on crack propagation, 7 groups reinforced concrete specimens of different reinforcement position and 1 group plain concrete specimens with the same size factors were designed and constructed for the tests. Based on the double-K fracture criterion and tests, fracture toughness calculation model which was suitable for reinforced concrete wedge splitting tensile specimens has been obtained. The results show that: the value of initial craking load Pini and unstable fracture load Pun decreases gradually with the distance of reinforcement away from specimens's top. Compared with plain concrete specimens, addition of steel bar can reduce the value of initial fracture toughness KIini, but significantly increase the value of the critical effective crack length ac and unstable fracture toughness KIun. For tensional concrete member, the effect of anti-cracking by reinforcement was mainly acted after cracking, the best function of preventing fracture initiation was when the steel bar was placed in the middle of the crack, and when the reinforcement was across the crack and located away from crack tip, it plays the best role in inhibiting the extension of crack.

Fatigue Crack Behavior of Triple Piece Spot by Crack Tip Opening Angle of Welded Specimen (3중 점용접재의 귤열단 열림각(CTOA)을 이용한 피로균열거동)

  • Song, Sam-Hong;Joo, Dong-Ho;Yang, Yun-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.74-83
    • /
    • 2001
  • In this study, internal fatigue crack initiation and propagation behavior were investigated by triple piece spot welded specimen. To estimate fatigue life of the specimen varied with shape and thickness, Crack tip opening angle(CTOA) correlated with stress intensity factor was used as the stiffness parameter. The relation between fatigue life and CTOA can be arranged by the quantitative equation for each specimen by experiment. In addition, the variation of stress distribution was solved and the effect on fatigue crack behavior was examined by finite element method(FEM).

  • PDF