• Title/Summary/Keyword: Crack Growth Prediction

Search Result 168, Processing Time 0.028 seconds

Crack growth prediction on a concrete structure using deep ConvLSTM

  • Man-Sung Kang;Yun-Kyu An
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.301-311
    • /
    • 2024
  • This paper proposes a deep convolutional long short-term memory (ConvLSTM)-based crack growth prediction technique for predictive maintenance of structures. Since cracks are one of the critical damage types in a structure, their regular inspection has been mandatory for structural safety and serviceability. To effectively establish the structural maintenance plan using the inspection results, crack propagation or growth prediction is essential. However, conventional crack prediction techniques based on mathematical models are not typically suitable for tracking complex nonlinear crack propagation mechanism on civil structures under harsh environmental conditions. To address the technical issue, a field data-driven crack growth prediction technique using ConvLSTM is newly proposed in this study. The proposed technique consists of the four steps: (1) time-series crack image acquisition, (2) target image stabilization, (3) deep learning-based crack detection and quantification and (4) crack growth prediction. The performance of the proposed technique is experimentally validated using a concrete mock-up specimen by applying step-wise bending loads to generate crack growth. The validation test results reveal the prediction accuracy of 94% on average compared with the ground truth obtained by field measurement.

Fatigue Life Prediction by Elastic-Plastic Fracture mechanics for Surface Flaw Steel (표면결함재에 관한 탄소성 파괴역학에 의한 피로수명 예측)

  • Gang, Yong-Gu;Seo, Chang-Min;Lee, Jong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.112-122
    • /
    • 1995
  • In this work, prediction of fatigue life and fatigue crack growth are studied. 4th order polynominal function is presented to describe the crack growth behaviors from artifical pit of SM45C steel. Crack growth curves obtained from 4th order polyminal growth equations are in good agreement with experimental data The crack growth behaviors at arbitrary stress levels and investigated by the concept of elastic-plastic fracture mechanics using ${\Delta}J$. Fatigue life prediction are carried out by numerical integral method. Prediction lives obtained by proposed method in this study, is in good agreement with the experimental ones. Life prediction results calculated by using of ${\Delta}J$ better than those of ${\Delta}K$.

  • PDF

Prediction of Growth Behavior of Initially Semicircular Surface Cracks under Axial Loading (축하중을 받는 초기 반원 표면피로균열의 진전거동 예측)

  • 김종한;송지호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1536-1544
    • /
    • 1992
  • A relatively simple prediction method is proposed for initially semicircular surface crack growth under axial loading. The method takes into account the difference in surface crack closure behavior at the depth point and at the surface intersection point, and also the relationship of crack closure for surface crack and through-thickness crack. The prediction method provides conservative estimation for fatigue life within factor of two, and the predicted crack geometry variations agree well with the observed results. As a result, the prediction method proposed here is considered to be useful for engineering application.

Prediction of Crack Growth in 2124-7851 Al-Alloy Under Flight-Simulation Loading (비행하중하에서 2124-T851 알루미늄합금의 피로균열진전 예측)

  • Sim, Dong-Seok;Hwang, Don-Yeong;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1487-1494
    • /
    • 2002
  • In this study, to propose the prediction method of the crack growth under flight-simulation loading, crack growth tests are conducted on 2124-7851 aluminum alloy specimens. The prediction of crack growth under flight-simulation loading is performed by the stochastic crack growth model which was developed in previous study. First of all, to reduce the complex load history into a number of constant amplitude events, rainflow counting is applied to the flight-simulation loading wave. The crack growth, then, is predicted by the stochastic crack growth model that can describe the load interaction effect as well as the variability in crack growth process. The material constants required in this model are obtained from crack growth tests under constant amplitude loading and single tensile overload. The curves predicted by the proposed model well describe the crack growth behavior under flight-simulation loading and agree with experimental data. In addition, this model well predicts the variability of fatigue lives.

Retardation Behavior of Fatigue Crack Growth and Fatigue Life Prediction of Thin Sheet Al 2024-T3 Alloy (박판 Al 2024-T3 합금재료의 피로균열성장지연거동과 피로수명예측)

  • Kim, S.G.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.31-37
    • /
    • 2011
  • Sheet aluminum alloys have been used in manufacturing of machine structures. In fatigue crack propagation behavior of thin sheet aluminum alloys, it is important that fatigue crack growth rate is affected by crack closure phenomenon. In this work, we analyzed the characteristics of fatigue crack propagation behavior in experiment of constant stress condition for thin sheet Al 2024-T3 alloys, and identified the retardation behavior of crack growth by comparing experimental results of thin and thick plate specimen. We attempt to operate the fatigue life estimating process using the fatigue related material constants from referred fatigue crack propagation analysis. And we analyzed the experimental and prediction results of fatigue life of thin sheet aluminum alloy in order to identify the relation between retardation behavior of fatigue crack growth and crack closure phenomenon.

Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study

  • Sutrakar, Vijay Kumar;Subramanya, N.;Mahapatra, D. Roy
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.143-168
    • /
    • 2015
  • Initiation of crack and its growth simulation requires accurate model of traction - separation law. Accurate modeling of traction-separation law remains always a great challenge. Atomistic simulations based prediction has great potential in arriving at accurate traction-separation law. The present paper is aimed at establishing a method to address the above problem. A method for traction-separation law prediction via utilizing atomistic simulations data has been proposed. In this direction, firstly, a simpler approach of common neighbor analysis (CNA) for the prediction of crack growth has been proposed and results have been compared with previously used approach of threshold potential energy. Next, a scheme for prediction of crack speed has been demonstrated based on the stable crack growth criteria. Also, an algorithm has been proposed that utilizes a variable relaxation time period for the computation of crack growth, accurate stress behavior, and traction-separation atomistic law. An understanding has been established for the generation of smoother traction-separation law (including the effect of free surface) from a huge amount of raw atomistic data. A new curve fit has also been proposed for predicting traction-separation data generated from the molecular dynamics simulations. The proposed traction-separation law has also been compared with the polynomial and exponential model used earlier for the prediction of traction-separation law for the bulk materials.

Crack Closure and Growth Behavior of Short Fatigue Cracks under Random Loading (Part II : Growth Behavior and Growth Life Prediction) (짧은 피로균열의 랜덤하중하의 균열닫힘 및 진전거동(Part II : 진전거동 및 진전수명예측))

  • Lee, Shin-Young;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.141-146
    • /
    • 2000
  • Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow- and wide-band random loading tests for various stress ratios. The importance of the crack closure phenomenon is examined by predicting the growth lives of short cracks using obtained crack opening behavior. Artificially prepared two-dimensional, short through-thickness cracks are used. The crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks. Most of the life prediction ratios are within the factor of 2 scatter band except several data at very short crack sizes, indicating that crack growth predictions based on the measured crack opening data are excellent. From the results obtained in this study, it can be concluded that crack closure is the primary factor governing fatigue crack growth of short cracks under random loading as well as under constant-amplitude loading.

  • PDF

Prediction of Crack Growth Retardation Behavior by Single Overload (단일 과대 하중에 의한 균열 성장 지연 거동 예측)

  • 송삼흥;최진호;김기석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.928-932
    • /
    • 1996
  • Single overload fatigue tests with overload sizes ranging from 50% and 100% have been performed to investing ate the fatigue crack growth retardation behavior. A modified and experimental method of Willenborg's model for prediction of crack growth retardation behavior has been developed, based on evaluations of equivalent plastic zone size (EPZS) changing its size along the overload plastic zone boundary. The minimum crack growth rates of each overload size are linearly decreased with overload size increasing, but fatigue lives extended by single overload are increasing much more unlike the crack growth rates. Comparisons of crack growth behavior predicted by EPZS model and Willenborg model have shown that the EPZS model accounts for overload effects better than Willenborg model. These effects include delayed retardation, large retardation region, minimum crack growth rate, and the increase rate of crack growth rate in the region crack growth rate recovered.

  • PDF

Evalustion and Prediction for the Fatigue crack Initiation and Growth Life by Reliability Approach (I) -Statistical Consideration for Fatigue Crack Growth Life- (신뢰성 공학적 피로 균열의 발생, 진전 수명 평가 및 예측에 관한 연구 ( I ) -피로 균열 진전 수명의 통계학적 분포 특성-)

  • 권재도;최선호;황재석;곽상국;전경옥;장재영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1583-1591
    • /
    • 1990
  • Life prediction and residual life prediction of structures of machines are one of the most strongly world wide needed problems as requirement in the stage of slowly developing economy which comes after rapidly and highly developing stage. For the purpose of statistical life prediction, fatigue test was conducted under the 4 stress levels, and for each stress level, about 20 specimens are used. The statistical properties of crack growth parameter m and C in the fatigue crack growth law of da/dN=C(.DELTA.K)sup m/, and the relationship between m and C, and the statistical distribution pattern of fatigue crack growth rate can be obtained by experimental results.

Analysis of Reheater Pipe Crack for Oil Power Plant (중유발전소의 재열기관 균열 해석)

  • Hong, S.H.;Hong, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.643-647
    • /
    • 2003
  • Power plant Piping operating at elevated temperature often fails prematurely by the growth of microcracks under creep conditions. Therefore, the life assessment of high temperature components that contain cracks is an important technological problem. The mechanisms of crack growth in simple metals and alloys have been investigated using both mechanical and microstructural approaches. In this study, life prediction accounting for creep, crack growth and thermal stress is analyzed.

  • PDF