• Title/Summary/Keyword: Crack Growth Detection

Search Result 39, Processing Time 0.038 seconds

Small Fatigue Crack Measurement and Crack Growth Characteristics for Smooth and Notch Specimens (평활 및 노치재의 미소피로균열측정과 성장특성)

  • 이종형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2145-2152
    • /
    • 1993
  • The objective of this paper is to examine the detection limit, growth characteristics and notch curvature radius in short crack problem. Measurement techniques such as ultrasonic method and back-face strain compliance method were adopted. The fatigue crack growth rate of the short crack is slower than that of a long crack for a notched specimen. The characteristic of crack growth and crack closure is same as the case of a delay of crack growth caused by constant amplitude load for an ideal crack or single peak overload for a fatigue crack. The short crack is detected effectively by ultrasonic method. A short surface crack occurs in the middle of specimen thickness and is transient to a through crack depth is larger than the notch curvature radius.

Crack growth prediction on a concrete structure using deep ConvLSTM

  • Man-Sung Kang;Yun-Kyu An
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.301-311
    • /
    • 2024
  • This paper proposes a deep convolutional long short-term memory (ConvLSTM)-based crack growth prediction technique for predictive maintenance of structures. Since cracks are one of the critical damage types in a structure, their regular inspection has been mandatory for structural safety and serviceability. To effectively establish the structural maintenance plan using the inspection results, crack propagation or growth prediction is essential. However, conventional crack prediction techniques based on mathematical models are not typically suitable for tracking complex nonlinear crack propagation mechanism on civil structures under harsh environmental conditions. To address the technical issue, a field data-driven crack growth prediction technique using ConvLSTM is newly proposed in this study. The proposed technique consists of the four steps: (1) time-series crack image acquisition, (2) target image stabilization, (3) deep learning-based crack detection and quantification and (4) crack growth prediction. The performance of the proposed technique is experimentally validated using a concrete mock-up specimen by applying step-wise bending loads to generate crack growth. The validation test results reveal the prediction accuracy of 94% on average compared with the ground truth obtained by field measurement.

Fiber Optic Bragg Grating Sensor for Crack Growth Detection of Structures (구조물의 균열 진전 탐지를 위한 광섬유 브래그 격자 센서)

  • Kwon, Il-Bum;Seo, Dae-Cheol;Kim, Chi-Yeop;Yoon, Dong-Jin;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.299-304
    • /
    • 2007
  • There are to be some cracks on the material degradation part or the stress concentration parts of the main members, which carry on over-loads, of structures. Because these cracks can be used to evaluate the structural health status, it is important to monitor the crack growth for maintaining the structural safety. In this study, the fiber Bragg grating sensor with a drop ball was developed as a sensor for crack growth detection of an existing crack. The crack growth detection sensor was constructed with three parts: a probe part, a wavelength controling light source and receiver part, and an impact part. The probe part was just formed with a fiber Bragg grating optical fiber The wavelength controling light source part was composed of a current supplying circuit, a DFB laser diode, and a TEC controling circuit for wavelength control. Also, the impact part was just implemented by dropping a steel ball. The performance of this sensor was confirmed by the experiments of the crack detection with an aluminum plate having one existing crack. According to these experiments, the difference of the sensor signal outputs was correlated with the crack length. So, it was confirmed that this sensor could be applied to monitor the crack growth.

A Study of Small Fatigue Crack Measurement and Crack Growth Characteristics (미소균열측정과 성장특성에 관한 연구)

  • Lee, Jong-Hyung;So, Yoon-Sub;Kim, Yun-Gon;Lim, Chun-Kyoo;Lee, Sang-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2007
  • The objective of this paper is to examine the detection limit, growth characteristics and notch curvature radius in short crack problem. Measurement techniques such as ultrasonic method and back-face strain compliance method were adapted. The fatigue crack growth rate of the short crack is slower than that of a long crack for a notched specimen. The short crack is detected effectively by ultrasonic method. A short surface crack occurs in the middle of specimen thickness and is transient to a through crack when maximum crack depth is larger than the notch curvature radius.

  • PDF

Application of the AE Technique for The Detection of Shaft Crack with Low Speed (저속회전축의 균열 검출을 위한 음향방출기법의 적용)

  • Gu, Dong-Sik;Kim, Jae-Gu;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.185-190
    • /
    • 2010
  • Condition monitoring(CM) is a method based on non-destructive test(NDT). So, recently many kind of NDT were applied for CM. Acoustic emission(AE) is widely used for the early detection of faults in rotating machinery in these days because of high sensitivity than common accelerometers and detectable low energy vibration signals. And crack is considered one of severe fault in the rotating machine. Therefore, in this paper, study on early detection using AE has been accomplished for the crack of the low-speed shaft. There is a seeded initial crack on the shaft then the AE signal had been measured with low-speed rotation as the applied load condition. The signal detected from crack in rotating machine was detected by the AE transducer then the trend of crack growth had found out by using some of feature values such as peak value, skewness, kurtosis, crest factor, frequency center value(FC), variance frequency value(VF) and so on.

Crack Detection of Carbon Fiber Reinforced Composites by Electric Potential Method with Bridge Circuit Concept (브리지 회로 개념이 적용된 전기 전위법을 이용한 탄소섬유복합재료의 균열검출)

  • Hwang, Hui-Yun
    • Composites Research
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • This paper suggested the electric potential method with a bridge circuit concept for the detection of the location and crack growth of carbon fiber reinforced composites to reduce the measurement numbers. 2 pairs of electrodes were fabricated on the center cracked thin composite plates, and potential changes at one pair of adjacent electrodes were observed while external voltage input was applied to the other pair of adjacent electrodes. The effects of the size and interval of electrodes, location and propagating direction of center cracks were investigated by experiments and finite element analyses. Detectable crack size was influenced by the electrode interval rather than the electrode size, and crack detection was enhanced as the size and interval of electrodes were smaller. Besides, output potential changes were larger as the crack grew and was nearer the voltage input electrodes.

Ultrasonic guided waves-based fatigue crack detection in a steel I-beam: an experimental study

  • Jiaqi Tu;Xian Xu;Chung Bang Yun;Yuanfeng Duan
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.13-27
    • /
    • 2023
  • Fatigue crack is a fatal problem for steel structures. Early detection and maintenance can help extend the service life and prevent hazards. This paper presents the ultrasonic guided waves-based (UGWs-based) fatigue crack detection of a steel I-beam. The semi-analytical finite element model has been built to obtain the wave propagation characteristics. Damage indices in both time and frequency domains were analyzed by considering the characteristic variations of UGWs including the amplitude, phase angle, and wave packet energy. The pulse-echo and pitch-catch methods were combined in the detection scheme. Lab-scale experiments were conducted on welded steel I-beams to verify the proposed method. Results show that the damage indices based on the characteristic variations in the time domain can identify and localize the fatigue crack before it enters the rapid growth stage. The damage severity can be reasonably evaluated by analyzing the time-domain damage indices. Two nonlinear damage indices in the frequency domain give earlier warnings of the fatigue crack than the time-domain damage indices do. The identification results based on the above two nonlinear indices are found to be less consistent under various excitation frequencies. More robust nonlinear techniques needed to be searched and tested for early crack detection in steel I-beams in further study.

Detection of SCC by Electrochemical Noise and In-Situ 3-D Microscopy

  • Xia, Da-Hai;Behnamian, Yashar;Luo, Jing-Li;Klimas, Stan
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.194-200
    • /
    • 2017
  • Stress-corrosion cracking (SCC) of alloy 600 and alloy 800 in 0.5 mol/L thiosulfate solution during constant strain was investigated using electrochemical noise (EN) combined with 3-D microscope techniques. The in-situ morphology observation and EN results indicate that the SCC process could be divided into three stages: (1) passive film stabilization and growth, (2) crack initiation, (3) and crack growth. Power Spectral Density (PSD) and the probability distribution obtained from EN were used as the "fingerprint" to distinguish the different processes. During passive film stabilization and growth, the current noise signals resembled "white noise": when the crack initiated, many transient peaks could be seen in the current noise and the wavelet energy at low frequency as well as the noise resistance decreased. After crack propagation, the noise amplitudes increased, particularly the white noises at low and high frequencies ($W_L$ and $W_H$) in the PSDs. Finally, the detection of metal structure corrosion in a simulated sea splash zone and pipeline corrosion in the atmosphere are established.

Real time crack detection using mountable comparative vacuum monitoring sensors

  • Roach, D.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.317-328
    • /
    • 2009
  • Current maintenance operations and integrity checks on a wide array of structures require personnel entry into normally-inaccessible or hazardous areas to perform necessary nondestructive inspections. To gain access for these inspections, structure must be disassembled and removed or personnel must be transported to remote locations. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, the location and depth of hidden damage, and the isolated location of the structure. Furthermore, prevention of unexpected flaw growth and structural failure could be improved if on-board health monitoring systems were used to more regularly assess structural integrity. A research program has been completed to develop and validate Comparative Vacuum Monitoring (CVM) Sensors for surface crack detection. Statistical methods using one-sided tolerance intervals were employed to derive Probability of Detection (POD) levels for a wide array of application scenarios. Multi-year field tests were also conducted to study the deployment and long-term operation of CVM sensors on aircraft. This paper presents the quantitative crack detection capabilities of the CVM sensor, its performance in actual flight environments, and the prospects for structural health monitoring applications on aircraft and other civil structures.

A Study on The Detection of Stress Corrosion Cracking Of SCM-4 by Acoustic Emission Method (AE 法 에 의한 高强度鋼 ( SCM - 4 ) 의 應力腐식균열進展 의 檢出 에 관한 硏究)

  • 서창민;문용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.377-383
    • /
    • 1982
  • Acoustic emission (AE) of a high strength steel (SCM-4) was measured under stress corrosion cracking(SCC) test at a constant displacement in 3.5% artificial NaCl solution of 18.deg.C, 45.deg.C and 60.deg.C, respectively. The results are as follows; During the SCC test, AE is detected and AE count rate is approximately proportional to the crack growth rate. Even though crack is not propagated macroscopically, AE is detected. The crack growth rate of SCC and the AE count rate are higher for the solution of higher temperature, 45.deg.C and 60.deg.C, than for the solution of lower temperature, 18.deg.C. In the early stage of SCC, AE total counts mostly depend on crack growth. In the later stage, however, AE mostly depends on the film fracture and the dissolution of anode.