• Title/Summary/Keyword: Crack Growth Analysis

Search Result 460, Processing Time 0.026 seconds

A Study on the Measurement of Elastic-Plastic Zone at the Crack Tip under Cyclic Loading using ESPI System (전자스패클패턴 간섭시스템을 이용한 피로하중을 받는 균열선단에서 탄소성 영역 측정에 관한 연구)

  • 김경수;심천식
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.13-18
    • /
    • 2002
  • The magnitude of the plastic zone around the crack tip of DENT(Double Edge Notched Tension) specimen and the crack growth length under cyclic loading were measured by ESPI(Electronic Speckle Pattern Interferometry) system. The measured magnitude of plastic zone was compared with the equations proposed by Irwin and calculated by a nonlinear static method of MSC/NASTRAN. The measured crack growth length by ESPI system was also compared with the obtained data by the image analysis system. From the study, it is confirmed that the plastic zone and crack growth length can be measured accurately with the high-tech equipment.

Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study

  • Sutrakar, Vijay Kumar;Subramanya, N.;Mahapatra, D. Roy
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.143-168
    • /
    • 2015
  • Initiation of crack and its growth simulation requires accurate model of traction - separation law. Accurate modeling of traction-separation law remains always a great challenge. Atomistic simulations based prediction has great potential in arriving at accurate traction-separation law. The present paper is aimed at establishing a method to address the above problem. A method for traction-separation law prediction via utilizing atomistic simulations data has been proposed. In this direction, firstly, a simpler approach of common neighbor analysis (CNA) for the prediction of crack growth has been proposed and results have been compared with previously used approach of threshold potential energy. Next, a scheme for prediction of crack speed has been demonstrated based on the stable crack growth criteria. Also, an algorithm has been proposed that utilizes a variable relaxation time period for the computation of crack growth, accurate stress behavior, and traction-separation atomistic law. An understanding has been established for the generation of smoother traction-separation law (including the effect of free surface) from a huge amount of raw atomistic data. A new curve fit has also been proposed for predicting traction-separation data generated from the molecular dynamics simulations. The proposed traction-separation law has also been compared with the polynomial and exponential model used earlier for the prediction of traction-separation law for the bulk materials.

Experimental Study on Evaluation of Fatigue Crack Growth Rate of Steel Plates using Crack Opening Displacement (COD(Crack Opening Displacement) 측정을 통한 강재의 피로균열진전속도 추정에 관한 실험적 연구)

  • Kim, Kwang-Jin;Kim, In-Tae;Ryu, Yong-Yeol
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.589-597
    • /
    • 2010
  • Steel structures have a higher probability of being damaged by fatigue than by other causes of deterioration. As such, their maintenance to prevent fatigue damage is essential to sustain their safety and performance during their service period. In their maintenance, the current state of their fatigue cracks must be assessed to determine appropriate reinforcement methods and the suitable time intervals of periodic inspections when fatigue cracks are detected. Determining the crack growth rate is a successful method of predicting fractures, but it requires technical knowledge on fracture mechanics and experience in numerical methods and software for finite element analysis. In this study, a fatigue crack growth test on through-thickness cracked steel plates was conducted to assess the crack growth rate without superior technical knowledge and experience. The relationship between the Crack Opening Displacement (COD) and the crack growth rate was found in relatively long fatigue cracks.

Relationship between Pattern of Fatigue Crack Surface and Fatigue Crack Growth Behavior under $K_{III}$ Mode-Four Point Shear in Al 5083-O

  • Kim Gun-Ho;Won Young-Jun;Sakakur Keigo;Fujimot Takehiro;Nishioka Toshihisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.474-482
    • /
    • 2006
  • Generally almost all fatigue crack growth is affected by mode I. For this reason a study on mode I has concentrated in the field of fracture mechanics. However the fatigue crack initiation and growth in machines and structures usually occur in mixed mode loading. If there is any relationship between the cause of fracture in mixed mode loading and fracture surface, fracture surface pattern will be the main mean explaining reasons of fatigue fracture and obtaining further information about fracture process. In this paper low point shear-fatigue test with Aluminum alloy hi 5083-O is carried out from this prospect and then the mixed mode distribution of fracture surface is examined from the result after identifying the generation of fatigue crack surface pattern. It was found from the experimental results that the fatigue crack surface pattern and the fatigue crack shear direction are remarkably consistent. Furthermore It is possible that the analysis of distribution of mixed mode through the fatigue crack surface pattern.

Relationship between Pattern of Fatigue Crack Surface and Fatigue Crack Growth Behavior under $K_{III}$ Mode-Four Point Shear in Al 5083-O (Al 5083-O재에 있어서 $K_{III}$ 모드 4점 전단 하에서의 피로파단면 무늬와 피로균열진전거동의 관계)

  • Kim, Gun-Ho;Won, Young-Jun;Sakakura, Keigo;Fujimoto, Takehiro;Nishioka, Toshihisa
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.43-44
    • /
    • 2006
  • Generally almost all fatigue crack growth is affected by model. For this reason a study on model has concentrated in the field of fracture mechanics. However the fatigue crack initiation and growth in machines and structures usually occur in mixed mode loading. If there is any relationship between the cause of fracture in mixed mode loading and fracture surface, fracture surface pattern will be the main mean explaining reasons of fatigue fracture and obtaining further information about fracture process. In this paper four point shear-fatigue test with Aluminum alloy Al 5083-O is carried out from this prospect and then the mixed mode distribution of fracture surface is examined from the result after identifying the generation of fatigue crack surface pattern. It was found from the experimental results that the fatigue crack surface pattern and the fatigue crack shear direction are remarkably consistent. Furthermore It is possible that the analysis of distribution of mixed mode through the fatigue crack surface pattern.

  • PDF

A Stochastic Analysis for Crack Growth Retardation Behavior and Prediction of Retardation Cycle Under Single Overload (단일과대하중하에서 피로균열진전지연거동 및 지연수명의 확률론적 해석)

  • Shim, Dong-Suk;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1164-1172
    • /
    • 1999
  • In this study, to investigate the fatigue crack retardation behavior and the variability of retardation cycles, fatigue crack growth tests were conducted on 7075-T6 aluminum alloy under single tensile overload. A retardation coefficient, D was introduced to describe fatigue crack retardation behavior and a random variable, Z to describe the variability of fatigue crack growth. The retardation coefficient was separately formulated according to retardation behavior which is composed of delayed retardation part and retardation part. The random variable, Z was evaluated from experimental data which was obtained from fatigue crack growth tests under constant amplitude load. Using these variables, a probabilistic model was developed on the basis of the modified Forman's equation, and retardation behavior and cycles were predicted under certain overload condition. The predicted retardation curve well agrees with the trend of experimental crack retardation behavior. And this model well predicts the scatter of experimental retardation cycles.

Thermoelastic Finite Element Analysis of Double horizontal Subsurface Cracks Due to Sliding Surface Traction (마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석)

  • 이진영;김석삼;채영훈
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.219-227
    • /
    • 2002
  • A linear elastic fracture mechanics analysis of double subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was performed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.

A Study on the Apparent Negative Crack Growth Phenomenon of J-R Curve(II) (J-R 곡선에서의 균열길이 감소현상에 관한 연구 (II))

  • 석창성;최용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1627-1631
    • /
    • 1992
  • It often occurs in J-R testing that some initial crack extension (.DELTA.a) data points have anomalous negative values. The reason for the apparent negative crack growth is due to the analysis method. The phenomenon as a possible source of error in determining $J_{IC}$ or J-R curve from partial unloading compliance experiments may be eliminated by the compliance correction equation or the offset technique. In this study, the correction methods are suggested and examined by the measurement of the actual crack length and $J_{JC}$ analysis.

Thermoelastic Finite Element Analysis of Multiple horizontal Subsurface Cracks Due to Sliding Surface Traction (마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석)

  • 이진영;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.50-58
    • /
    • 2000
  • A linear elastic fracture mechanics analysis of multiful subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was peformed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.

  • PDF

Simulation of Fatigue Crack Propagation by Finite Element Analysis (유한요소법에 의한 피로균열 진전 시뮬레이션)

  • Goo B.C.;Yang S.Y.;Park J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.337-340
    • /
    • 2005
  • The effect of residual stress on fatigue crack growth was investigated in terms of finite element analysis. Simulations were performed on a CT specimen in plane strain. An interface-cohesive element that accounts for damage accumulation due to fatigue along the notch direction has been used. Numerical results show that fatigue crack growth rate slows down when compressive residual stress field exists in front of the crack tip.

  • PDF