• Title/Summary/Keyword: Crack Closure Effect

Search Result 80, Processing Time 0.024 seconds

A Comparative Study of Methods to Predict Fatigue Crack Growth under Random Loading (랜덤하중 하에서 피로균열진전예측 방법들의 비교)

  • Lee, Hak-Joo;Kang, Jae-Youn;Choi, Byung-Ik;Kim, Chung-Youb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1785-1792
    • /
    • 2003
  • Methods to predict fatigue crack growth are compared in a quantitative manner for crack growth test data of 2024- T351 aluninum alloy under narrow and wide band random loading. In order to account for the effect of load ratio, crack closure model, Hater's equation and NASGRO's equation have been employed. Load interaction effect under random loading has been considered by crack closure model, Willenborg's model and Wheeler's model. The prediction method using the measured crack opening results provides the best result among the prediction methods discussed for narrow and wide band random loading data.

Surface crack propagation behavior and crack closure phenomena in 5083-H113 aluminum alloy (5083-H113 알루미늄合金의 表面균열進展擧動과 균열닫힘 現象)

  • 박영조;김정규;신용승;김영운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.243-252
    • /
    • 1987
  • The propagation and closure behavior of surface crack initiated at a sharply notched specimens were investigated in 5083-H113 aluminium alloy under constant amplitude of tension load by the unloading elastic compliance method. The crack shape (aspect ratio) was found to be approximately semicircular during the crack was being small and to be changed to semi-elliptical during it was being long. The propagation rate of a surface crack initiated from notch root decelerated with increasing crack length when the crack was small and then accelerated when it was large. The effect of stress ratio was large in lower .DELTA.K range, but the effective stress intensity factor range .DELTA.K$_{eff}$ was found to diminish the difference of the crack propagation rate. By considering the increase in crack closure stress with crack length and examining the microphotographs, plasticity-induced and roughness-induced crack closure mechanisms were predominant in the range of this study.y.

Crack Closure Effects on Small Fatigue Crack Growth Behavior in High Strength Aluminum (고강도 알루미늄에서의 균열닫힘이 미소 피로균열의 전파거동에 미치는 영향)

  • Lee, Hyeon-U
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.55-64
    • /
    • 1990
  • The fatigue crack growth behavior of physically-short cracks(0.2${\Delta}K$ with $da/dN<1{\times}10^{-7}m/cycle$. The transition crack lengths where similtude with ${\Delta}K$ existed was between 1 and 2mm. The effective stress intensity factor range based on COD measurements gave better correlation between the physically-short and long cracks. Thus it can be considered that the crack closure effect is one of the main factors which causes the differences between these two cracks.

  • PDF

Finite Element Analysis of Fatigue Crack Closure under Plane Strain State (평면변형률 상태 하에서 유한요소해석을 이용한 균열닫힘 거동 예측 및 평가)

  • Lee, Hak-Joo;Song, Ji-Ho;Kang, Jae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.202-207
    • /
    • 2004
  • An elastic-plastic finite element analysis of fatigue crack closure is performed for plane strain conditions. The stabilization behavior of crack opening level and the effect of mesh size on the crack opening stress are investigated. In order to obtain a stabilized crack opening level for plane strain conditions, the crack must be advanced through approximately four times the initial monotonic plastic zone. The crack opening load tends to increase with the decrease of mesh size. The mesh size nearly equal to the theoretical plane strain cyclic plastic zone size may provide reasonable numerical results comparable with experimental crack opening data. The crack opening behavior is influenced by the crack growth increment and discontinuous opening behavior is observed. A procedure to predict the most appropriate mesh size for different stress ratio is suggested. Crack opening loads predicted by the FE analysis based on the procedure suggested resulted in good agreement with experimental ones within the error of 5 %. Effect of the distance behind the crack tip on the crack opening load determined by the ASTM compliance offset method based on the load-displacement relation and by the rotational offset method based on the load-differential displacement relation is investigated. Optimal gage location and method to determine the crack opening load is suggested.

  • PDF

Crack Closure and Growth Behavior of Short Fatigue Cracks under Random Loading (Part II : Growth Behavior and Growth Life Prediction) (짧은 피로균열의 랜덤하중하의 균열닫힘 및 진전거동(Part II : 진전거동 및 진전수명예측))

  • Lee, Shin-Young;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.141-146
    • /
    • 2000
  • Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow- and wide-band random loading tests for various stress ratios. The importance of the crack closure phenomenon is examined by predicting the growth lives of short cracks using obtained crack opening behavior. Artificially prepared two-dimensional, short through-thickness cracks are used. The crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks. Most of the life prediction ratios are within the factor of 2 scatter band except several data at very short crack sizes, indicating that crack growth predictions based on the measured crack opening data are excellent. From the results obtained in this study, it can be concluded that crack closure is the primary factor governing fatigue crack growth of short cracks under random loading as well as under constant-amplitude loading.

  • PDF

AE Characteristics of Fatigue Crack Opening and Closure in SWS 490B and Al 7075-T6 Alloy (SWS 490B와 Al 7075-T6 합금의 피로균열 열림 및 닫힘시 음향방출 특성 분석)

  • Yoon, Dong-Jin;Jeong, Jung-Chae;Lee, Seung-Seok;Won, Chang-Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.960-968
    • /
    • 2003
  • The objective of this study is to investigate the effect of AE activities in the crack opening and closure during the fatigue test. The laboratory experiments for various materials and test conditions were carrie out to identify AE characteristics of fatigue crack propagation. Compact tension specimens of SWS 490B and Al 7075-T6 alloy were prepared for fatigue test. AE activities were analyzed based on the phase of the loading cycle. In case of SWS 490B, the most of AE was generated when the crack began opening and the crack closed fully, whereas a few in the full opening of the crack. On the other hand, in case of Al 7075-T6, a distinct AE activity was observed during crack opening process. AE activity in the peak loading of cycle was different with each specimen. However, in the same material, AE activity was not affected by the change of cyclic frequency (0.1, 0.2, 1.0 ㎐). It was found that AE activities during crack opening and closure depend on material properties such as micro-structure, yield strength and elongation.

Evaluation of Fatigue Strength and Characteristics of Fatigue Crack Closure in SM35C Steel (중탄소강의 피로크랙 개폐구의 특성 및 피로강도의 평가)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • It is not clearly known how surface defects or inclusions of a medium carbon steel affect a fatigue strength. In this study, we used SM35C specimens with spheroidized cementite structure to eliminate dependence of micro structure of fatigue crack. The investigation was carried out by behavior of crack closure at non-propagation crack and effect of the fatigue limit according to the artificial defects size. Experimental findings are obtained as follows : (1) Fatigue crack initiation point of medium carbon steel with spheroidized cementite structure is at the surface defects. (2) Non-propagating crack length of smooth specimen is equal to the critical size of defect. (3) Considering the opening and closure behavior of fatigue crack, the defect shape results in various crack opening displacement, while it does not affects the fatigue limit level of medium carbon steel with spheroidized cementite structure. (4) The critical length of the non-propagation crack of smooth specimen is the same as critical size of defect in transient area which determines threshold condition in steel with spheroidized cementite structure.

  • PDF

The effects of 3.5% NaCl solution on the corrosion fatigue crack propagation characteristics of SS41 steel (SS41강의 부식피로 균열 전파특성에 미치는 3.5% NaCl수용액의 영향)

  • 오세욱;김재철;최영수
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.111-119
    • /
    • 1987
  • The corrosion fatigue crack propagation characteristics of SS41 steel in 3.5% NaCl solution have been evaluated for loading frequencies of 1Hz and 0.2Hz. A sine wave loading profile was used for fatigue testing. Each test was carried out at a constant stress ratio, R(0.1). The main results are summarized as follows; 1. Fatigue crack propagation rate was higher in 3.5% NaCl solution than in air, higher in the base metal than in the weld metal, and higher at f =0.2Hz than at f =1Hz. 2. The crack closure level of the base metal was not influenced by cyclic frequencies, but that of the weld metal was much influenced. 3. When the crack closure effect was eliminated in the evaluation of crack propagation characteristics by using $\Delta K_{eff}$, the envirommental influence was distinctly observed. At the base metal, crack propagation rate was enhanced by the hydrogen embrittlement, and the weld metal was reduced by the crac closure. 4. There was clearly observed hydrogen embrittlement and severely corroded aspect at fracture surface of lower frequency than that of higher frequency, and at that of base metal than that of the weld metal.

  • PDF

Fatigue Crack Growth Behavior in Ultrafine Grained Low Carbon Steel

  • Kim, Ho-Kyung;Park, Myung-Il;Chung, Chin-Sung;Shin, Dong-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1246-1252
    • /
    • 2002
  • Ultrafine grained (UFG) low carbon (0.15 wt.% C) steel produced by equal channel angula. pressing (ECAP) was tested for investigating the effect of load ratio on the fatigue crack growth rate. Fatigue crack growth resistance and threshold of UFG steel were lower than that of asreceived coarse grained steel. It was attributed to the less tortuous crack path. The UFG steel exhibited slightly higher crack growth rates and a lower △Kth with an increase of R ratio. The R ratio effect on crack growth rates and △Kth was basically indistinguishable at lower load ratio (R >0.3), compared to other alloys, which indicates that contribution of the crack closure vanishes. The crack growth rate curve for UFG steel exhibited a longer linear extension to the lower growth rate regime than that for the coarse grained as-received steel.

The effect of the excessive loading and welding anisotropy on the fatigue crack propagation behavior of TMCP steel for offshore structure (해양구조물용 TMCP강의 피로균열진전거동에 미치는 용접이방성 및 과대하중의 영향)

  • ;;三澤啓志
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.82-88
    • /
    • 2000
  • The effect of the welding for the offshore structure in the TMCP steel on the fatigue crack propagation rate and crack opening-and-closure behavior was examined. The welding anisotropy of the TMCP steel and crack propagation characteristics of the excessive loading were reviewed. (1) It seemed that a heat which was generated by the welding made a compressive residual stress over the base metal, so fatigue crack propagation rate was placed lower than in case of the base metal. (20 In the base metal, an effect of the anisotropy which has an effect of fatigue crack propagation rate of the excessive load and the constant amplitude laos was not found but in the welding material case, fatigue crack propagation rate of the excessive load in the specimen of the width direction was located in the retard side as compared with a specimen rolling direction. (3) A crack opening ratio of the used TMCP stel in this study was not changed after excessive loading but a retard phenomenon of crack propagation was observed. Consequently, it was thought that all of the retard phenomenon of crack propagation did not only a cause of the crack opening-and-closure phenomenon.

  • PDF