• 제목/요약/키워드: Cr-Al alloy

검색결과 237건 처리시간 0.022초

$Li_2$$(Ai, Cr)_3$/Ti기 2상 금속간화합물의 소성거동 (Plastic Behaviro of Two Phase Intermetallic Compounds Based on $Li_2$-type$(Ai, Cr)_3$/Ti)

  • 박정용;오명훈;위당문
    • 한국재료학회지
    • /
    • 제4권8호
    • /
    • pp.906-914
    • /
    • 1994
  • 상온과 액체질소온도에서 압축시험을 통하여 $LI_{2}$단상함금 및 $LI_{2}$상에 제 2상을 수 %또는 20%정도 포함하는 합금조성을 선택하였다. 일반적으로 제 2상을 20%정도 포함하는 2상합금들은 $Ll_{2}$단상합금에 비해 항복강도는 높으나 연성은 좋지 않았다. 그러나 $Cr_{2}AI$을 제 2상으로하는 20%정도 포함하는 Al-21Ti-23Cr합금은 다른 합금들에 비해 비교적 높은 항복강도와 함계 우수한 연성을 나타내었다. 또한 $Li_{2}$단상합금 및 $Cr_{2}Al$을 수% 포함하는 2상합금에 대한 소성거동도 조사하였다. 균질화처리 후에 제 2상의 양은 줄었으나 pore의 양은 증가하였다. 균질화처리 후에 $Ll_{2}$단상조직에서 나타나는 pore의 양은 Cr의양이 증가할수록 줄어들었으며, Cr 의 양이 더욱 증가하여 $Cr_{2}$Al이 제2상으로 생성될 때는 pore가 완전히 소멸하였다. 변형속도를 $1.2 \times 10^{-4}/s$$1.2 \times 10^{-2}/s$의 두가지 조건으로 변화시키면서 압축시험을 행하여 합금의 연성에 미치는 환경취성의 영향을 조사하였다. $LI_{2}$단상합금인 AI-25Ti-10Cr합금이 환경취성의 영향을 가장 적게 받는 것으로 나타났다. 그러나 pore의 생성, 환경취성, ingot 주조조직 등을 종합평가해 보면 $Cu_{2}Al$을 제 2상으로 20%정도 포함하는 Ak-21Ti-23Cr합금이 가장 우수한 인장연싱율을 나타낼 것으로 기대된다.

  • PDF

기계적 합금화에 의한 $Ti_{25}Cr_8Al_{67}$ 합금의 합성 및 기계적 성질 (Synthesis and Mechanical Properties of $Ti_{25}Cr_8Al_{67}$ Alloy by Mechanical Alloying)

  • 이강률
    • 한국분말재료학회지
    • /
    • 제2권3호
    • /
    • pp.231-237
    • /
    • 1995
  • The powder mixtures of Al, Ti and Cr were mechanically alloyed to obtain nanocrystalline powders of $Ti_{25}Cr_8Al_{67}$ composition. Both FCC phase and undissolved metal chromium formed by MA. During the annealing of the MA powders, the phase transition from FCC to ordered $Ll_2$ started at ~$300^{\circ}C$ and was completed below $600^{\circ}C$. As a result of the high-temperature compressive test for the MA powder compacts, the stress-strain curves showed serrated yielding behavior at 400 and $600^{\circ}C$, and softening phenomenon below the strain rate of $5{\times}10^{-3}s^{-1}$ at $800^{\circ}C$. The compressive yield strength as a function of test temperatures showed the nature of the positive-temperature dependence which has the peak temperature around $600^{\circ}C$.

  • PDF

Mechanical Properties and Microstructure of Aluminum Alloys with Dispersed Nanoscale Quasicrystalline Particles

  • Fujita, Masashi;Kimura, Hisamichi;Inoue, Akihisa
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.708-709
    • /
    • 2006
  • New Al-based alloys with very high ultimate tensile strength were developed in high Al concentration range of 91-95 at.% for Al-Fe-Cr-Ti-M (M: Co and Mo) systems and Al-Fe-Cr-Mo-Ti-Co system by the dispersion of nanoscale quasicrystalline particles in Al phase. The effect of adding elements, M was discussed in the viewpoint of stability of super-cooled liquid state and formation ability of quasicrystalline phase. The P/M Al-Fe-Cr-Ti-M alloys with dispersed nanoscale quasicrystalline particles exhibited ultimate tensile strength of 350MPa at 573K and 200MPa at 673K.

  • PDF

Al-Si확산코팅에 따른 Ni기 초합금의 미세조직과 부식특성 (Microstructure and Corrosion Characteristics of Al-Si Diffusion Coated Ni Base Super alloy)

  • 안종천;김택수;윤동주;이경구
    • 한국표면공학회지
    • /
    • 제32권2호
    • /
    • pp.100-108
    • /
    • 1999
  • The microstructure and corrosion properties of Al-Si diffusion coated PWA1426 alloy have been investigated. Experimental variables are included temperatures of heat-treatment and coating thickness. The microstructure of coated layer and corrosion properties were analysed by SEM, EDS and hot corrosion test. Two major processes have been found to contribute to microstructural changes in the coating. These are, firstly, the transformation of the NiAl to other $Ni_2Al_3$-based phase and secondly, the precipitation of Cr containing phases. Specimens heat treated at $1080^{\circ}C$ showed superior corrosion resistance to heat treated at $880^{\circ}C$. These increase in life was attributed to the transformation of NiAl and increased coating thickness of PWA1426 alloy.

  • PDF

금속결합층의 조성이 $\textrm{ZrO}_2$-$\textrm{CeO}_2$-$\textrm{Y}_2\textrm{O}_3$ 단열층의 내구성에 미치는 영향 (Effect of Composition of Bond Coating on the Durability of the Plasma Sprayed $\textrm{ZrO}_2$-$\textrm{CeO}_2$-$\textrm{Y}_2\textrm{O}_3$ Thermal Barrier Coating)

  • 김혜성;김병희;서동수
    • 한국재료학회지
    • /
    • 제9권1호
    • /
    • pp.73-80
    • /
    • 1999
  • The effect of alloy compositions of the bond coating on the plasma sprayed-thermal barrier coatings was investigated. The performance of the coating composed of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ and Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$was evaluated by isothermal and thermal cyclic test in an ambient atmosphere at 115$0^{\circ}C$. The failure of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ coatings was occurred at the bond coating/ceramic coating interface while Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ coating was failed at the substrate/bond coating interface after thermal cyclic test. The lifetime of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$coatings was longer than Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$coating. The oxidation rate of the NiCrAl bond coating examined by TGA was lower than CoNiCrAlY bond coatings. In summary, these results suggest that Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$system as thermal barrier coating be not suitable considering the durability of the coating layer for high temperature oxidation and thermal stress.

  • PDF

소결 온도와 유지 시간에 따른 Fe-Cr-Al 다공성 금속의 제조 (Fabrication of Fe-Cr-Al Porous Metal with Sintering Temperature and Times)

  • 구본욱;이수인;박다희;윤중열;김병기
    • 한국분말재료학회지
    • /
    • 제22권2호
    • /
    • pp.100-104
    • /
    • 2015
  • The porous metals are known as relatively excellent characteristic such as large surface area, light, lower heat capacity, high toughness and permeability. The Fe-Cr-Al alloys have high corrosion resistance, heat resistance and chemical stability for high temperature applications. And then many researches are developed the Fe-Cr-Al porous metals for exhaust gas filter, hydrogen reformer catalyst support and chemical filter. In this study, the Fe-Cr-Al porous metals are developed with Fe-22Cr-6Al(wt) powder using powder compaction method. The mean size of Fe-22Cr-6Al(wt) powders is about $42.69{\mu}m$. In order to control pore size and porosity, Fe-Cr-Al powders are sintered at $1200{\sim}1450^{\circ}C$ and different sintering maintenance as 1~4 hours. The powders are pressed on disk shapes of 3 mm thickness using uniaxial press machine and sintered in high vacuum condition. The pore properties are evaluated using capillary flow porometer. As sintering temperature increased, relative density is increased from 73% to 96% and porosity, pore size are decreased from 27 to 3.3%, from 3.1 to $1.8{\mu}m$ respectively. When the sintering time is increased, the relative density is also increased from 76.5% to 84.7% and porosity, pore size are decreased from 23.5% to 15.3%, from 2.7 to $2.08{\mu}m$ respectively.

The use of Thermodynamics and Phase Equilibria for Prediction of the Behavior of High Temperature Corrosion of Alloy 617 in Impure Helium Environment

  • Kim, Dong-Jin;Lee, Gyeong-Geun;Kim, Sung-Woo;Kim, Hong-Pyo
    • Corrosion Science and Technology
    • /
    • 제9권4호
    • /
    • pp.164-170
    • /
    • 2010
  • Thermodynamic consideration was performed for Alloy 617 exposed to an impure helium ($H_2$ 20pa, $H_2O$ 0.5pa, $CH_4$ 2pa and CO 5pa) at $950^{\circ}C$. Oxidation power was decreased in the order Al > Ti > Si > Cr > Mn. Decarburization and carburization reactions were available leading to carbon activity decrease and increase, respectively, depending on carbon and Cr activities. The thermodynamic prediction was compared with the experimental results obtained in similar conditions (($H_2$ 20pa, $H_2O$ 0.05pa, $CH_4$ 5pa and CO 2pa) and $950^{\circ}C$) by others for Alloy 617. The driving force for oxidation of Al, Ti and Si is very large to be oxidized at a given impure helium and the environment is actually carburizing towards the structural alloy, which is consistent with this work.

기계적 합금화를 이용한 Al0.75V2.82CrZr 내화 고엔트로피 합금의 경량화 및 고온 열안정성 연구 (Thermal Stability and Weight Reduction of Al0.75V2.82CrZr Refractory High Entropy Alloy Prepared Via Mechanical Alloying)

  • 김민수;이한성;안병민
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.478-483
    • /
    • 2023
  • High-entropy alloys (HEAs) are characterized by having five or more main elements and forming simple solids without forming intermetallic compounds, owing to the high entropy effect. HEAs with these characteristics are being researched as structural materials for extreme environments. Conventional refractory alloys have excellent high-temperature strength and stability; however, problems occur when they are used extensively in a high-temperature environment, leading to reduced fatigue properties due to oxidation or a limited service life. In contrast, refractory entropy alloys, which provide refractory properties to entropy alloys, can address these issues and improve the high-temperature stability of the alloy through phase control when designed based on existing refractory alloy elements. Refractory high-entropy alloys require sufficient milling time while in the process of mechanical alloying because of the brittleness of the added elements. Consequently, the high-energy milling process must be optimized because of the possibility of contamination of the alloyed powder during prolonged milling. In this study, we investigated the high-temperature oxidation behavior of refractory high-entropy alloys while optimizing the milling time.

고주파유도 가열에 의한 나노구조의 FeCrAlSi-Al2O3 복합재료의 합성 및 급속소결 (Rapid Sintering and Synthesis of Nanostuctured FeCrAlSi-Al2O3 Composite by High-Frequency Induction Heating)

  • 두송이;조승훈;고인용;도정만;윤진국;박상환;손인진
    • 대한금속재료학회지
    • /
    • 제49권3호
    • /
    • pp.231-236
    • /
    • 2011
  • Nanopowder of $Fe_2O_3$, Al, Cr and Si was fabricated by high energy ball milling. A dense nanostuctured $A_2O_3$ and $6.06Fe_{0.33}Cr_{0.16}Al_{0.23}Si_{0.29}$ composite was simultaneously synthesized and consolidated using high frequency induction heated sintering method within 1 minute from mechanically activated powders of $Fe_2O_3$, Al, Cr and Si. The grain sizes of $Al_2O_3$ and $Fe_{0.33}Cr_{0.16}Al_{0.23}Si_{0.29}$ in composite are 80 and 18 nm, respectively.

급속응고 Al-Mg-X(X=Cr, Zr or Mn) 합금의 미세구조와 특성간의 관계 (The Relationship between Microstructure and Property of Rapidly Solidified Al-Mg-X(X=Cr, Zr or Mn) Asloys)

  • 맹덕영
    • 한국분말재료학회지
    • /
    • 제3권4호
    • /
    • pp.271-278
    • /
    • 1996
  • In this study, the effect of the transition elements on the microstructure and mechanical properties of rapidly solidified Al-Mg-X alloys was investigated. As a result of the rapid solidification processing, fine equiaxed grains with a mean diameter of 2 $\mu$m were observed in these alloys. Many fine particles were found to be distributed rather homogeneously throughout the matrix with relatively large particles occasionally at grain boundaries. The ultimate tensile strengths of Al-Mg-X alloys were found to decrease rather remarkably at 150 $^{\circ}C$ without the gain of the ductility at 150 $^{\circ}C$, which may result from segregation of $\beta$ ($Al_{3}Mg_{2}$) precipitates. Fine dimples were observed on the fracture surfaces for all alloy systems and the variation of the size and shape of dimples was not observed upon alloy systems. The ductility at 530 $^{\circ}C$ was found to be ~100%, suggesting that grain boundary sliding did not contribute to ductiliy despite he grain size stabilization. The absence of superplastic behavior may be associated with low boundary misorientation in rapidly solidified Al-Mg-X alloys.

  • PDF