• Title/Summary/Keyword: Cr layer

Search Result 810, Processing Time 0.031 seconds

Study on Effect of Various Underlayer on Bilayer Agglomerlation (다양한 하지층이 이중층의 응집현상에 미치는 영향에 관한 연구)

  • Ha, J.H.;Ryu, D.H.;Im, H.W.;Jung, J.M.;Choi, H.J.;Hong, I.G.;Koh, J.H.;Koo, S.M.;Kamiko, M.;Ha, J.G.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.233-241
    • /
    • 2012
  • We have deposited the bilayer consisted of the underlayer and the overlayer by using DC magnetron sputter on Single crystal MgO (001) substrate. This bilayer was fabricated at fixed annealing temperature and time. We have controlled agglomeration effect by changing of the bilayer thickness. Finally, we have made the self-organization and nano-structured film. In this processing, we have made nano-dot which consists of the underlayer and the overlayer, unlike the existing method called the agglomeration effect in the single layer. The underlayer has deposited using Ti, Cr and Co. And the overlayer has deposited with Ag. Through the analysis of Atomic force microscopy (AFM), the microstructure of underlayer is observed by AFM to confirm the formation of nano-dot. As the nano-dot through above processing, we have found that the nano-dot has the different shape. As a result, when we manufactured nano-dot through the agglomeration effect of bi-layer, the best matching material is Ti for underlayer. And also, we have found that MgO/Ti/Ag samples have been grown expitaxially toward the direction of MgO (001) by X-ray Diffraction analysis.

Magnetoresistance of Bi Nanowires Grown by On-Film Formation of Nanowires for In-situ Self-assembled Interconnection

  • Ham, Jin-Hee;Kang, Joo-Hoon;Noh, Jin-Seo;Lee, Woo-Young
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.79-79
    • /
    • 2010
  • Semimetallic bismuth (Bi) has been extensively investigated over the last decade since it exhibits very intriguing transport properties due to their highly anisotropic Fermi surface, low carrier concentration, long carrier mean free path l, and small effective carrier mass $m^*$. In particular, the great interest in Bi nanowires lies in the development of nanowire fabrication methods and the opportunity for exploring novel low-dimensional phenomena as well as practical application such as thermoelectricity[1]. In this work, we introduce a self-assembled interconnection of nanostructures produced by an on-film formation of nanowires (OFF-ON) method in order to form a highly ohmic Bi nanobridge. A Bi thin film was first deposited on a thermally oxidized Si (100) substrate at a rate of $40\;{\AA}/s$ by radio frequency (RF) sputtering at 300 K. The sputter system was kept in an ultra high vacuum (UHV) of $10^{-6}$ Torr before deposition, and sputtering was performed under an Ar gas pressure of 2m Torr for 180s. For the lateral growth of Bi nanowires, we sputtered a thin Cr (or $SiO_2$) layer on top of the Bi film. The Bi thin films were subsequently put into a custom-made vacuum furnace for thermal annealing to grow Bi nanowires by the OFF-ON method. After thermal annealing, the Bi nanowires cannot be pushed out from the topside of the Bi films due to the Cr (or $SiO_2$) layer. Instead, Bi nanowires grow laterally as a mean s of releasing the compressive stress. We fabricated a self-assembled Bi nanobridge (d=192 nm) device in-situ using OFF-ON through annealing at $250^{\circ}C$ for 10hours. From I-V measurements taken on the Bi nanobridge device, contacts to the nanobridge were found highly ohmic. The quality of the Bi nanobridge was also proved by the high MR of 123% obtained from transverse MR measurements. These results manifest the possibility of self-assembled nanowire interconnection between various nanostructures for a variety of applications and provide a simple device fabrication method to investigate transport properties on nanowires without complex patterning and etching processes.

  • PDF

Effect of process conditions on crystal structure of Al PEO coating. II. Bipolar and electrolyte (알루미늄 PEO 코팅의 결정상에 미치는 공정 조건에 대한 연구 II. Bipolar 펄스와 전해액)

  • Kim, Bae-Yeon;Ham, Jae-Ho;Lee, Deuk Yong;Kim, Yong-Nam;Jeon, Min-Seok;Kim, Kiyoon;Choi, Ji-Won;Kim, Sung Youp;Kim, Kwang Youp
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.65-69
    • /
    • 2014
  • Crystallographic phases of Plasma electrolytic oxidized Al alloy, A1100, A5052, A6061, A6063, A7075, were investigated. Two types of electrolyte $Na_2Si_2O_3$ and Na2P2O7 were also compared. Bipolar pulse, $2000{\mu}sec$ with $400{\mu}sec+420V$ impulse and $300{\mu}sec$ - impulse were applied for 20 min. ${\alpha}-alumina$, ${\gamma}-alumina$, ${\eta}-alumina$, $Al_{4.95}Si_{1.05}O_{9.52}$, and $(Al_{0.9}Cr_{0.1})_2O_3$ were mainly observed. Si, component of electrolyte, were moved into the PEO layer by bipolar pulse. Glassy phase was also observed at the surface of $Na_2Si_2O_3$ electrolyte treated PEO layer, and increased with the Mg content of Al alloy. It is concluded that at first glassy phase was formed by the micro plasma, and the high temperature of plasma turns glassy phase to several crystalline phases. And we could expect that many other crystalline phase could be formed by PEO process.

Magnetoresistance of $[FeNi/Cu/CoFe(Co)/Cu]_N$ Spin-Valve Multilayers ($[FeNi/Cu/CoFe(Co)/Cu]_N$ Spin-Valve 다층박막의 자기저항 특성)

  • 김미양;이정미;최규리;오미영;이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • $Buffer/[NiFe/Cu/CoFe(Co)/Cu]_N$ spin valve multilayers prepared by dc magnetron sputtering on a corning glass substrate using NiFe and CoFe(Co) posses different coercivities. Dependence of magnetoresistance on the type and thickness of buffer layer, thickness of Cu, NiFe, stacking number of multilayer, substrate temperature and annealing temperature in the form $[NiFe/Cu/CoFe(Co)/Cu]_N$ spin-valve multilayers were investigated. To evaluate effect of magnetoresistance for this samples, X-ray diffraction analysis, vibrating sample magnetometer analysis, and magnetoresistance measurement (4-probe method) were performed the maximum magnetoresistance ratio and coercivity were 7.5 % and 140 Oe, respectively for $Cr-50{\AA}/[NiFe-20{\AA}/Cu-{\AA}/Co-20{\AA}/Cu-50{\AA}]_10$ at substrate temperature of 9$0^{\circ}C$. Magnetoresistance slope maintained 0.25%/Oe until 15$0^{\circ}C$ of annealing temperature, and then decreased to 0.03%/Oe at 20$0^{\circ}C$. It was confirmed that the main factor of thermal stability was deteriorating of soft magnetic properties in the NiFe layer.

  • PDF

Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds (Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도)

  • Park, Tae-Jun;Kong, Jong-Pan;Na, Hye-Sung;Kang, Chung-Yun;Uhm, Sang-Ho;Kim, Jeong-Kil;Woo, In-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.

Reliability of Cu Interconnect under Compressive Fatigue Deformation Varying Interfacial Adhesion Treatment (유연소자용 기판과의 접착 특성에 따른 구리 배선의 압축 피로 거동 및 신뢰성)

  • Min Ju Kim;Jeong A Heo;Jun Hyeok Hyun;So-Yeon Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.105-111
    • /
    • 2023
  • Electronic devices have been evolved to be mechanically flexible that can be endured repetitive deformation. This evolution emphasizes the importance of long-term reliability in metal wiring connecting electronic components, especially under bending fatigue in compressed environments. This study investigated methods to enhance adhesion between copper (Cu) and polyimide (PI) substrates, aiming to improve the reliability of copper wiring under such conditions. We applied oxygen plasma treatment and introduced a chromium (Cr) adhesion layer to the polyimide substrate. Our findings revealed that these adhesion enhancement methods significantly affect compression fatigue behavior. Notably, the chromium adhesion layer, while showing weaker fatigue characteristics at 1.5% strain, demonstrated superior performance at 2.0% strain with no delamination, outperforming other methods. These results offer valuable insights for improving the reliability of flexible electronic devices, including reducing crack occurrence and enhancing fatigue resistance in their typical usage environments.

The Effect of LhGH on Hair Regeneration in C57BL/6CrN Mouse (LhGH가 마우스(C57BL/6CrN)의 모발 재성장에 미치는 영향)

  • Kim, Yong-Ju;Kim, Tae-Keun;Min, Byoung-Hoon;Kim, Soo-Jin
    • Applied Microscopy
    • /
    • v.41 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • Hair is an appendage of skin which protects the body from outer physical and chemical stimuli. Hair is generated from the hair follicle lying on a sunken basal layer of epidermis. Hair cycling, which regenerates hair follicles throughout the life time of the organism. Numerous kinds of factors which exist at the hair follicle have been reported to regulate hair cycling, Human growth hormone secreted from pituitary gland, initially demonstrated to accelerate organ's growth, has been reported to play a role in the biology of organ size determination. We investigated the effect of 6-histidines residues tagged at amino-terminus of human growth hormone using light and electronmicroscopic methods. Human growth hormone encapsulated in nano-liposome (LhGH) was used to find how LhGH affects hair follicle cycling of mouse (C57BL6/CrN). Distilled water as a negative control, 3% Minoxidil as a positive control, and LhGH were applied to mouse for weeks. LhGH increased the number of exposed hairs per given areas ($1mm^2$). This result was also confirmed using a different breed of mice which show natural hair loss in an old age (about 17 months after birth). When LhGH was applied for 3 weeks after natural hair loss, natural hair loss on these mice was prevented, However, the control group mice on which LhGH was not applied showed further hair loss. This result indicates that LhGH may stimulate hair cycling of mouse. In clusion, it is cleat that the LhGH increased the number of hair on mice and help the depilated skin to grow new hair follicles again.

Carbon and Nitrogen Inputs by Litterfall of Chamaecyparis obtusa Planted in Pine Wilt Disease-disturbed Forests (소나무재선충병 피해지에 식재된 편백의 낙엽·낙지에 의한 탄소 및 질소 유입량)

  • Kang, Hyeon Cheol;Baek, Gyeongwon;Choi, Byeonggil;Ha, Jiseok;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, carbon (C) and nitrogen (N) inputs by the litterfall of Japanese cypress (Chamaecyparis obtusa Endlicher) planted in pine wilt disease-disturbed forests were determined. The study sites were located in Sacheon-si, Gyeongsangnam-do. Eight plots under two regeneration sites (DR: four plots of C. obtusa planted under slightly disturbed Pinus thunbergii stands; CR: four plots of C. obtusa planted following the clear-cutting of severely disturbed pine stands) were established to collect litterfall from December 2018 to December 2019. The growth of diameter at breast height (DBH) was significantly higher in the CR treatment (12.10 cm) than that in the DR treatment (9.42 cm). C and N concentrations and the C/N ratio in C. obtusa leaf litter did not differ significantly between the two regeneration treatments, but the C/N ratio was significantly lower in the leaf litter collected in October (93) relative to that collected in December (143). The C concentration of litterfall components was significantly higher in C. obtusa leaf litter and in P. thunbergii needle litter than in broadleaved and miscellaneous litter, whereas the N concentration in broadleaved and miscellaneous litter was significantly higher than that in the leaf litter of C. obtusa and in branch litter. Thus, the C/N ratio was significantly higher in C. obtusa leaf litter and branch litter compared with that in miscellaneous and broadleaved litter. Respective C and N inputs by leaf litter were 773 kg C ha-1 yr-1 and 6.95 kg N ha-1 yr-1 for the CR treatments, and 78 kg C ha-1 yr-1 and 0.70 kg N ha-1 yr-1 for the DR treatment. Total C and N inputs were higher for the DR treatment (3,765 kg C ha-1 yr-1 and 47.6 kg N ha-1 yr-1, respectively) than for the CR treatment (1,290 kg C ha-1 yr-1 and 17.2 kg N ha-1 yr-1, respectively). These results indicate that, for C. obtusa, the DBH growth in the CR treatment was superior to that in the DR treatment, but the C and N inputs by litterfall were considerably reduced in CR treatments.

Design of Fall Impact Protection Pads Using 3D Printing Technology and Comparison of Characteristics according to Structure (3D 프린팅 기술을 활용한 낙상충격 보호패드 설계 및 구조에 따른 특성비교)

  • Park, Jung Hyun;Jung, Hee-Kyeong;Lee, Jeong Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.4
    • /
    • pp.612-625
    • /
    • 2018
  • This study designed 16 kinds of basic structure and 4 kinds of modified structure for impact protection pads with a spacer fabric shape. The pad is a structure in which hexagonal three-dimensional units, composed of a surface layer and a spacer layer, are interconnected. Designed pads were printed with flexible $NinjaFlex^{(R)}$ materials using a FDM 3D printer. The printed pads were evaluated for impact protection performance, compression properties and sensory properties. The evaluation of the impact protection performance indicated that basic structures better than CR foam material at 20cm height were DV1.5, DX1.5, DX1.0, DV1.0 and HV1.5. The evaluation of the compression properties for the five types, with good results in the impact protection performance, indicated that DV1.0, DX1.0, DV1.5, HV1.5 and DX1.5 showed good results, respectively. The sensory evaluation of DV1.0, DX1.0, and DV1.5, which with good results when considering both the impact protection performance and the compression performance, showed that DV1.0 were the best for surface, flexibility, compression and weight. Therefore, DV1.0 is shown to be the best structure for protection pads.

Nano-patterning technology using an UV-NIL method (UV-NIL(Ultraviolet-Nano-Imprinting-Lithography) 방법을 이용한 나노 패터닝기술)

  • 심영석;정준호;손현기;신영재;이응숙;최성욱;김재호
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. A 5${\times}$5${\times}$0.09 in. quartz stamp is fabricated using the etch process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. FAS(Fluoroalkanesilane) is used as a material for anti-adhesion surface treatment on the stamp and a thin organic film to improve adhesion on a wafer is formed by spin-coating. The low viscosity resin droplets with a nanometer scale volume are dispensed on the whole area of the coated wafer. The UV-NIL experiments have been performed using the EVG620-NIL. 370 nm - 1 m features on the stamp have been transferred to the thin resin layer on the wafer using the multi-dispensing method and UV-NIL process. We have measured the imprinted patterns and residual layer using SEM and AFM to evaluate the potential of the process.